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1 Introduction 
 
Since the introduction of the expected goals (xG) metric in football (soccer), the development and 
distribution of advanced analytics has changed how the game is played and consumed by 
supporters, professionals, and clubs  [1]. Football broadcasters and pundits now regularly include 
advanced metrics such as  xG, line breaking passes, chance creation, and goal involvements in their 
match analyses [2-4]. Some of these metrics are probabilistic measures that quantify the chance 
of an action occurring at any given moment in a football match [1]. For example, the xG models 
assign a score between zero and one to any observed shot in a match. The philosophy being that: 
given a set of shot characteristics (i.e. distance and angle), the model estimates a probability of a 
goal from the observed shot. Different expected models have different sets of predictors 
depending on the response variable being modeled. As a matter of fact, even xG models can vary 
depending on the choice of predictor variables as well. Commonly used predictors are shot 
location, distance to goal, shot angle, type of play, body part used to shoot, shot type, and shot 
technique [5, 6]. Newer models have also started to incorporate predictors beyond shot 
characteristics, such as goalkeeper location, defender location, received pass type, and whether 
the shot-taker is under pressure [6-9]. 
 
These models are typically developed using event-level football data like the datasets which Hudl 
StatsBomb provide [10, 11]. Event data is collected by tracking players over the course of a football 
match and logging their actions such as shots, passes, and tackles. There are other types of 
football data such as freeze frame data, physical/wearable data, tracking/positional data, video 
broadcast, and match sheet data [12-14]. In recent years, researchers have been working on 
creating a common data format to enable users to analyze and build models using the data with 
ease. With access to such rich data, football researchers and scientists have continually advanced 
the field of football analytics through books, academic journals, conferences (virtual/physical), and 
industry panels [5, 6, 11].   
 
Naturally, as an applied science to sport, one of the most interesting aspects of football analytics 
for both football supporters and professionals is the scouting and evaluation of players. A very 
nuanced trait of most productionalized expected models is that they do not account for players 
who take a football action. In statistical terms, there is no player predictor in the model. This 
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absence of the player in models seems contradictory to the nature of football, where a player’s skill 
influences the success of an action. It is reasonable to assume that a striker would have a higher 
chance of scoring a goal as opposed to a centre back. Moreover, not all strikers have the same 
goal-scoring capabilities. However, in an xG model that does not adjust for players, two separate 
shots that have the same measures for the model predictors will be assigned the exact same xG 
regardless of who is taking the shot. This is arguably a limitation of current xG models. The 
inclusion of players in xG models along with their shot characteristics can provide information 
about the skills of the shot-taker as well. Rather than a general xG measure, an individualized 
approach can estimate the player’s effect on goal-scoring which represents their contribution to 
the success of a goal. Popular models used to create these event-level models are classification 
models like logistic regression and extreme gradient boosting (XGBoost). For these models, 
scientists can use the player as an individual predictor in the model. However, there are issues in 
doing so: (i) categorical predictors require a dummy/reference level and (ii) the number of unique 
players can lead to a high cardinality issue and a sparse predictor space. Therefore, these 
classification models do not have the ability to estimate “an impact” of the player on a football 
action. In football, a key assumption is that players have different skill sets and are different from 
each other. Any model that does not account for the player, will inherently ignore this assumption 
and treat every player as the same in the dataset.  

 
Figure 1. This diagram illustrates the hierarchical structure of event-level data for four different players collected from 
Chelsea’s 3-1 win over Liverpool on May 4th, 2025. In this match, Cole Palmer (CP) took 4 open play shots, Enzo Fernandez 
(EF) took 2 shots, Virgil van Dijk (VVD) took 3 shots, and Mohamed Salah (MS) only took 1 shot. 
 
Additionally, football data, especially event-level data, has a hierarchical structure. Since players 
make several passes, engage in a number of tackles, and take multiple shots over the course of a 
match, they can show up more than once in the data for a single match. All of these events are 
logged under the players’ names. As a result, any given player can be repeated in the dataset 
especially when the data history spans multiple seasons. In statistical terms, the events are nested 
under a player hierarchy in the data. This hierarchy is illustrated in Figure 1. 
 

2 



 
This data hierarchy suggests that the events which are associated with any specific player, are 
statistically correlated with each other. In other words, two actions taken by the same player are 
not independent of each other as there is a common link between the two actions. This is because 
individual subjects in data have idiosyncrasies that are latent and unmeasured by the data. 
Therefore, this repeated measures structure violates one of the fundamental assumptions of most 
statistical and machine learning models: “all observations are independent of each other”. Popular 
probabilistic models used in football analytics like logistic regression and tree-based boosting 
models do not account for this within-player correlation. However, the application of these models 
to repeated measures can lead to improper inferences [15]. If the primary aim of a model is 
prediction, this data hierarchy has a miniscule impact when robust non-parametric models like 
XGBoost are used. However, if the analysis revolves around player scouting and evaluation, then it 
is reasonable to argue that appropriate statistical inference should also be a priority. 
 
Tureen & Olthof [16] unpacked this phenomenon in even greater detail emphasizing how it provides 
researchers a unique opportunity to develop player-adjusted models. They demonstrated the use 
of hierarchical statistical models to account for the repeated measures and player idiosyncrasies in 
event data using a multi-level parameter modeling framework. The models are called hierarchical 
or multilevel models because (i) the model is fit on data that has a hierarchy and (ii) the model itself 
has a hierarchy in terms of its parameters [17]. The particular subset of hierarchical models used in 
their research are called Generalized Linear Mixed Models (GLMMs). They created player-adjusted 
xG models for both the men’s and women’s game and demonstrated how they can be used to derive 
player impact scores coined as “Estimated Player Impact” (EPI).  Additionally, their models provide 
interpretable predictor effects on xG with statistically appropriate confidence intervals. This type 
of analysis is not possible for tree-based models as they are black-box models [18]. As for logistic 
regression or single-level generalized linear models (GLMs), the standard errors for predictor 
effects are biased because they do not account for the within-player correlation [15, 16]. An 
obvious extension of Tureen & Olthof’s paper is to incorporate multiple seasons of data to 
longitudinally analyze players over time. Time in itself can add another level of hierarchy to the data 
where each season might have an impact on how individual players perform. Many factors such as 
incoming/outgoing transfers at a club, managerial and structural changes, and age can alter the 
expected performance of a player. One can also argue that certain players may actually be robust to 
these changes and their performances may not change all that much. An anecdotal example would 
be how Jose Mourinho’s core players from his first tenure at Chelsea F.C. (i.e. Frank Lampard, John 
Terry, Didier Drogba, and Petr Cech) continued to perform at the top level regardless of the 
constant change in managers at the club. 
 
For the purposes of this research, the original work by Tureen & Olthof is extended to a longitudinal 
study by incorporating five seasons’ worth of English Premier League data from Hudl StatsBomb 
and by re-formulating their modeling framework. Secondly, this research paper demonstrates how 
hierarchical models can be applied to other football actions such as progressive carries and passes 
into the attacking penalty box. Finally, the statistical models are applied to a hypothetical football 
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case study to illustrate how statistical inference can be used to supplement player scouting and 
evaluation. 

 
 

2 Research Aims 
​
2.1 Data 
Hudl StatsBomb event & 360 freeze frame data are used in this research. The datasets contain 
information from 1,900 matches spanning five seasons of the English Premier League from the 
2020/21 season to the 2024/25 season. The events in the data refer to football actions such as 
shots, passes, and dribbles etc. Each event is labeled with different characteristics of a particular 
football action, including the player, their position on the field at the time of the event (in x-y 
coordinates) and granular information about the action itself. The 360 data contains the locations 
of every player in the freeze frame taken during the logging of a football event. Table 1 illustrates 
how the data looks using dummy measures. In this example, Enzo Fernandez has two shots from 
the same match. The shot characteristics, however, differ for each shot. A single premier league 
season has 380 total matches where a player can play at most 38 matches. Therefore, the sheer 
volume of data points for any given player can explode very quickly depending on how involved they 
are in their respective matches. In this research, there are five seasons worth of data creating an 
additional layer of hierarchy where the matches themselves are nested under a season. A detailed 
illustration of the player level hierarchy is provided in Figure 2. The hierarchy in the figure can be 
expanded based on the levels available for study such as the match, the matchweek, the football 
club, and the season etc.​
 
Table 1. Snapshot of hierarchical data structure of shot event data. 

Event ID Match ID  Season Player … Location  Body Part Shot Outcome 

abc1 cheliv25 24/25 E. Fernandez … (x, y) Right Foot Goal 

hjq2 cheliv25 24/25 E. Fernandez … (x, y) Head No Goal 

… … … … … … … … 

jyt242 livcry25 24/25 C. Gakpo … (x, y) Head No Goal 

cxy190 livcry25 24/25 M. Salah … (x, y) Left Foot Goal 

 
2.2 Motivation 
The models developed by Tureen & Olthof demonstrate how GLMMs can be carefully applied to 
football data to draw inferences on player impacts on goal scoring opportunities as well as deriving 
associations between the predictor and response variables. For example, the paper identified that 
Heung-min Son (Tottenham Hotspur FC) & Vivianne Miedema (Arsenal Women’s FC) were the best 
ranked players in terms of player impact on goal scoring. In terms of predictor-response 
associations, they statistically quantified that a defender pressuring a shot-taker can reduce their 
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odds of scoring a goal by approximately 15%, on average in the Premier League. On the other side 
of things, they derived that when a player opens up the angle of their shot by roughly 16 degrees 
they increase the odds of a goal by 57%, on average in the Premier League. Their study samples are 
from two seasons of the Premier League and three seasons of the Women’s Super League (WSL). 
As a consequence, the inferences drawn from their models are contextualized within those 
seasons only. These are, however, interesting findings that allow football practitioners to better 
understand the empirical analysis of how goals have been scored in the Premier League and WSL. 
Some of the findings are very intuitive such as the defender pressure example. But, an empirical 
number allows a football practitioner, such as a defensive coach in the youth academy, to 
emphasize how important it is for a defender to make sure to pressure a shot-taker.  
 
The original work, however, did not demonstrate how extending the parameters in the model  allows 
the researchers to also assess the longitudinal change in player impact from one season to the 
next. The takeaways were provided from a cross-sectional perspective where they did not account 
for the fact that some players had played multiple seasons of matches. Additionally, their work only 
focuses on the build of an xG model. In the discussion section of their paper, the authors 
emphasize that event level data enables researchers to expand their work to other types of football 
actions such as passes, crosses, and tackles. 

 
Figure 2. Illustration of hierarchical data structure for shot event data using the player as the highest level. The hierarchy 
in the figure can be expanded based on the levels available for study such as the match, the matchweek, the football club, 
and the season etc.​
 
2.3 Aims 
Motivated by the work of Tureen & Olthof and the access to five seasons worth of data, the aims of 
this research are to: (i) build GLMMs that allow for the longitudinal analysis of football players, (ii) 
apply the hierarchical model framework to two additional football actions of interest, (iii) estimate 
the player impact on football actions of interest and allow for player-adjustment, and (iv) draw 
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generalizable inferences about the relationships between the predictor and response variables in a 
football context. The focal point of this research is to re-iterate the capabilities of hierarchical 
models as well as demonstrate to the analytics community how to design a statistically sound 
longitudinal study using event-level data. Unlike the original paper, this paper does not investigate 
the predictive capabilities of hierarchical models in football. 

 
 

3 Methodology 
 
Hierarchical models can be approached from either a frequentist or a Bayesian perspective [15, 19]. 
The authors in the original paper used a frequentist framework in their model design; therefore, 
this research takes a frequentist approach as well. However, we discuss the powerful capabilities 
of the Bayesian framework in the discussion section of this paper to motivate future research 
related to football hierarchical models. The hierarchical models are built on three types of events: 
(i) shots, (ii) carries into the penalty box, and (iii) passes into the penalty box. 
 
3.1 Shots for Expected Goals (xG) 
Naturally, any model that estimates the probability of a goal from a set of shot characteristics is an 
expected goals (xG) model. The response or target variable is binarized into two categories (1: Goal, 
0: No Goal). The predictors used in our xG model are as follows: 
 
(i) Three continuous predictors: distance to goal, angle of shot, season1 since the players’ data 
debut 
(ii) Two binary predictors: presence of goalkeeper in the shot triangle, whether shot-taker is under 
pressure 
(iii) One multi-class predictors: body part with which the shot was taken 
(iv) One count predictor: count of defenders in the shot triangle,  
 
The shot characteristics and their summary statistics are provided in Table 2 in Section 5. The 
predictor variables were selected based on literature review and investigation of multi-collinearity. 
The study sample is restricted to only shots that did not result from a direct penalty or free kick. 
The models are also stratified such that one model is built using only forwards (strikers and 
wingers) and another model that includes all position types. The season predictor is included to 
adjust for any population-level relationship with the target: “does playing in the league for more 
seasons increase goal scoring odds, on average?”. Additionally, it is statistically inappropriate to 
exclude the time predictor (as a fixed effect) when performing a longitudinal data analysis using 
GLMMs. 
 

1 season is converted to a numeric variable that represents the number of full seasons a player has played in 
the premier league according to the data. A value of 0 represents their first season in the data, a value of 2 
represents their third season in the data. Not all players have their real life debut season in the data. 
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3.2 Progressive Carries into the Box  
In football analytics, a “carry” refers to the action where a player moves the ball from one location to 
another while maintaining control/possession of it. Hudl StatsBomb defines it as an action where a 
player moves the ball at least 5 metres while maintaining possession. In addition, the carry ends 
with another on-ball action such as a pass, shot, dribble, or loss of possession etc. A carry is 
different from a dribble in the sense that a dribble involves the player attempting to beat an 
opposition player in a clear one-versus-one.​
 
For this paper, we define the response variable as a binary variable that reflects whether it was a 
successful or unsuccessful carry into the opposition penalty box. A carry is defined as a “success” 
when it results in a shot on target, completed dribble, completed pass, or a won foul. The response 
is defined as an “unsuccessful” carry when it results in a shot off target, blocked shot,  failed 
dribble, failed pass, turnover, or a committed foul. The model predictors are relatively 
straightforward: (i) duration of carry (in seconds), (ii) distance of carry, (iii) whether the ball carrier 
was under pressure by a defender during the action, (iv) whether the ball carrier was under pressure 
right after the carry, (v) whether the carry started from a pass-reception or (vi)  after a dribble by 
the carrier himself, and (vii) season1. The final predictor is the season predictor as described in 
Section  3.1. The study sample  is limited to carries that start from the attacking half excluding the 
penalty box: carries initiated from zones 2, 3, and 4 in Figure 3 are excluded. The output of this 
model is interpreted as the estimated probability that a carry results in a successful action.​
​
Figure 3. Visual of the attacking half of a football pitch divided into numbered zones 

 
3.3 Passes into the Box 
Expected passes (xP) are an interesting suite of models that quantify the probability of a pass 
completion. As one can imagine, pass probabilities can change dramatically based on the area of 
the pitch a player makes the pass as well as where the pass is intended to go. In this research, we 
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focus on two types of “attacking” passes: (i) passes into the box from zones 1, 5, 6, and 10  and (ii) 
passes into the box from zones 7, 8, 9, and 11 through 15 (see Figure 4). The models are stratified 
based on the pass types to delineate the inferences made about them. The first type of pass 
reflects passes that are driven into the box from the width of the pitch and the second type of pass 
reflects passes that are pinged into the box from the midfield. Zones 11 and 15 are technically 
considered “wings”, however, we include them in the midfield passes for the convenience of 
analysis. This stratification is applied because we hypothesize that there is a statistical difference 
(particularly in magnitude) in how the pass outcome is influenced due to inherent differences in 
pitch zones. This hypothesis is tested using the hierarchical models. StatsBomb data binarizes the 
pass events as either “Complete” or “Incomplete”. The output of this model is interpreted as the 
estimated probability that a pass results in a completion (i.e. reception by a teammate in the 
penalty box). The predictors for the two pass models are summarized in Tables 5.  
 
3.4 Generalized Linear Mixed Models 
All three types of response variables in this research paper are binary variables. As a result, the 
appropriate model choice is the multi-level logistic regression. The formal name for this model is 
Generalized Linear Mixed Model (GLMM) with binary outcomes. This model linearly learns the 
relationship between a set of predictors and the target. A trained model can then be used to 
calculate probabilities based on its predictors. To describe the formulation of the model, we will 
use the xG model as an example. Equation 1 illustrates the GLMM framework used by Tureen & 
Olthof: 

 
Equation 1. Generalized linear mixed model with a random intercept specification on players indexed by j​

 
In this equation, the i refers to the i-th shot in the study sample. The g() represents the logit link 
function and the π term is the odds of a goal for the i-th shot. The choice of the logit function is 
what makes this GLMM a multi-level logistic regression. The 𝑥i terms are the model predictors and 
the associated β terms represent the predictor effects. To appropriately adjust for the players in 
the data, a parameter for the players can be incorporated to create a Generalized Linear Mixed 
Model (GLMM). The j index refers to the j-th player in the data. The δ term is a statistical parameter 
that represents the random effect associated with the j-th player. As the model is trained, it 
computes the values of the parameters in the equation including the δ . As a result, each player in 
the dataset will have their own estimated δ measure. This implies that every j-th player will have 
their own unique intercept or baseline (β0 + δ0j) for a shot that they take. The δ parameter can be 
included in the framework because the data has a hierarchy.  With access to five seasons worth of 
data, we can account for player-specific changes over time. To do this, the original model 
specification can be extended by including the season as a fixed effect predictor and including a 
random slope on the season.  Equation 2 illustrates the new GLMM framework: 
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Equation 2. Generalized linear mixed model with a random intercept-slope specification where the random intercept is 
on the j-th player and the random slope is on season played by the j-th player​

 
The δ1j parameter represents the random slope. The season is included as a fixed effect predictor 
to ensure that a population-level temporal trend can be estimated. Whereas, the random slope 
enables the estimation of individual level deviations from the average trend. Not all players have all 
five seasons worth of data. So, the season predictor is re-coded such that each players’ first 
season (in the data) is treated as their respective baseline season. It is important to finally note that 
β0 represents the model intercept or baseline. This is the estimated model output when all 
predictors are at their baseline level and the random effect and slopes are zero. The zero value for 
the random effect represents the average player and the zero value for the random slope 
represents the average change since their debut season. The GLMMs also estimate uncertainty 
measures for the predictor effects in the form of 95% Wald Confidence Intervals (CIs) and the 
standard deviations for the random effects and slopes.  
 
3.5 Estimated Player Impact 
From a statistical perspective, the random effect can be interpreted as the baseline change on the 
target variable that is attributable to the players: this change is unmeasured by the rest of the 
predictors in the model. However, explained in football terminology, the measure can be used and 
interpreted as the “estimated player impact” (EPI) on the outcome of a football action. Consider the 
xG model as an example: the unique skills from each player can now be statistically estimated by 
deriving their δ which quantify the effects of players on xG. The δ is a continuous measure and is 
assumed to follow a Gaussian distribution [20]. This implies that certain players have positive 
effects on xG while others have negative effects. A positive value for a player would imply that they 
increase the xG value in the estimation. Whereas, a negative value for a player would decrease the 
xG estimation. Any player with an EPI value that is either zero or close to zero is considered the 
“average” player in the study sample. It is important to note, however, that because these GLMMs 
are fit using a logit link, these effects actually have a multiplicative impact on the xG scale. The 
player impacts derived in the models are only comparable between the players in their respective 
analytical samples. This suggests that the random effects from a forwards only model is not 
comparable to a centre-backs only model. The EPI (or δ) can be interpreted in a similar fashion 
when it comes to the progressive carries and passes models. 
 
3.6 Random Slope 
From a football perspective, the random slope tells us how a player’s performance changes from 
season to season relative to the league as a whole. A positive random slope value reflects that a 
player’s impact of achieving a successful football outcome increases (or changes) over seasons at a 
faster rate than the league average. In simpler terms, these players have empirically demonstrated 
growth. In the xG context, we can infer that a player has become “better”, not necessarily efficient, 
at scoring. Conversely, a negative random slope value reflects a declining trend over time 
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suggesting that the player’s performance grows slowly, flattens, or decreases relative to the 
average trend. This suggests that these players are not keeping up with the rest of the league. 
However, it is important to interpret these slopes in conjunction with the random intercepts. The 
random intercept reflects the players’ baseline level for EPI. Some of these players may begin their 
first season at a much higher baseline (e.g. an established elite striker) while others start lower but 
improve faster over the seasons (e.g. an academy player). Collectively, the intercept and slope 
describe whether a player not only begins above or below the population average, but also whether 
they continue to deviate away from the rest of the league or converge toward the average player 
over time. A high EPI player with a “small” yet negative slope can still be viewed as a high performing 
player. 
 
3.7 Limitations & Work-Arounds 

Although random slope models are theoretically justifiable when working with large volumes of 
longitudinal data, random-slope specifications remain relatively uncommon in applied research 
due to their computational demands, convergence challenges, and substantial data requirements 
[21]. Barr et al. [21] emphasize the theoretical value of maximal random-effects structures for valid 
inference. However, later methodological work has demonstrated that such models are often 
difficult to implement in observational performance settings [22, 23]. These limitations are 
particularly relevant in football analytics, where player responsibilities can change drastically due 
to tactical changes by a manager, transfer of the player themselves, or the arrival of new players at 
the club. 

Despite the access to five seasons’ worth of event data, football data are often highly imbalanced. 
In the context of shots, forwards have more shot data on average compared to defenders and 
defensive midfielders. As a result, a large subset of players may not have enough information in 
their repeated measures for slope estimation. Additionally, in an ever-changing game like football, 
there exists structural shifts in season to season trends. These temporal dynamics can induce 
instability in slope estimation and, in some cases, lead to convergence issues even with extensive 
data coverage. 

Given these limitations, we propose a two-stage modeling approach. First we attempt to fit a 
random intercept and random slope model where feasible. When intercept-slope models fail to 
converge or produce variance estimates that are unstable, we provide a pragmatic work-around. 
We stratify the models by season and compare the estimated player impacts across seasons. This 
sensitivity analysis assesses whether the individual players consistently deviate from the 
population baseline. Players that consistently have a positive or negative intercept for all of their 
seasons can be viewed as players who have sustained the same type of performance in the 
respective season. Conversely, players with very different EPIs can be viewed as players who have 
demonstrated sporadic performances in their time in the English Premier League.  

This season-stratified approach is less statistically powerful because it effectively breaks a single 
longitudinal dataset into several independent sub datasets. This reduces the sample size for each 
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model and restricts the models from learning about trends across seasons. In a full mixed-effects 
framework, random slopes and intercepts are estimated simultaneously using partial pooling, 
allowing shared information across players and time periods to improve parameter stability and 
reduce estimation variance [24]. Furthermore, the stratified approach will innately treat each 
season as independent rather than recognizing potential continuity in player performance across 
seasons. While this stratified approach is less statistically powerful than the intercept-slope 
specification and cannot directly model individual trends over time, it still offers a robust empirical 
solution to enable player scouting and evaluation

 

4 Data Analysis & Engineering 
 
Prior to model development, multiple data processing and filtration steps were taken. All of the 
target variables were re-coded such that a successful outcome was represented by a numeric “1” 
and an unsuccessful outcome was represented by a “0”. For each player, we estimated their 
preferred foot as well as most common position using pass event data. The frequency of passes 
taken by both feet are measured and the foot that led to more passes is assigned as the player’s 
preferred foot. The same approach is taken when assigning a player's most common playing 
position. However, the position groups were simplified to four outfield categories: (i) Forwards 
which include strikers and wingers, (ii) Midfielders, (iii) Centre Backs, and (iv) Fullbacks/Wingbacks. 
Additionally, human intervention was required for certain edge cases where wingbacks were 
assigned as forwards. These players were re-categorized into the “Fullback/Wingback” category. 
For all three types of models, the continuous predictors are centered by the sample mean and 
scaled by the sample standard deviation. The multi-class predictors were dummy-encoded such 
that one of the classes is the reference level. The binary predictors are one-hot encoded and the 
count variables are treated as is unless otherwise stated. 
 
4.1 Shots 
The response variable for the xG model is whether a shot results in a goal. Penalty and direct 
free-kicks are dropped from the analysis because they represent a direct shot from a dead-ball 
situation. This resulted in 47,076 unique shots from a total of 985 players across five seasons. 
Because we are building longitudinal random effect-slope models, we add additional filters. Players 
who did not play for more than one season are dropped from the analysis. Additionally, players who 
had zero goals and less than 25 shots across all of their seasons were dropped from the analysis. 
These ad-hoc steps are added to ensure there is at least some variability within each players’ data 
points. This led to a study sample of 39,859 shots from 403 unique players and 26 clubs. Players 
from Norwich City were dropped as they did not fall into these categories. For the forwards only xG 
model, the study sample consisted of 20,576 shots from 153 forwards and 24 clubs. Luton Town, 
Norwich City, and West Bromwich Albion forwards did not pass the filtration process. 
 
Exploratory analysis of the study sample shows that forwards, on average, take more shots as 
opposed to midfielders and defenders (see Figure A1 in the appendix). This phenomenon is 

11 



 
unsurprising; however, it gives us the opportunity to build a forwards only model without 
convergence issues. Due to the lack of variability in response variables as well as low sample sizes 
for individual defenders and midfielders, stratified models for these position groups lead to 
convergence issues. Refer to the appendix for additional visuals of the distribution of sample sizes 
for players by position groups. 
 
4.2 Progressive Carries into the Box 
As mentioned in section 3.2, this paper also focuses on progressive carries into the penalty box 
originating from all of the zones excluding 2, 3, and 4  in Figure 3. If a carry originated on the border 
of two zones, the carry was assigned to the zone with the lower number. Hudl StatsBomb data 
provides information on which related events occur before and after the carry action. For each 
carry, we identified how the carry began: dribble, ball receipt, or neither. We also used the related 
events to identify whether the player was under pressure by the defender during and after the carry 
action. Finally, the related events structure of the data allowed us to categorize the outcome of the 
carry into a successful or unsuccessful carry using the rules defined in section 3.2. Similar to the 
shots data filtering process, we filtered for players who have at least one season’s worth of data, at 
least 30 carries, and at least one successful carry across all of their seasons. This led to a study 
sample of 17,501 carries from 179 unique players and 26 clubs. 
 
4.3 Passes 
Similar to the carries variable, the progressive passes in the box are filtered for attempted passes 
into the penalty box that originated from the attacking half. Any pass originating from the penalty 
box was dropped. Additionally, passes from zones 7 to 9 and 11 to 15  are categorized as “attacking” 
passes from midfield and passes from zones 1, 5, 6, and 9 are categorized as “attacking” passes 
from the wing. Direct passes from dead-ball situations such as corners, free kicks, throw-ins, and 
goal kicks were dropped. Hudl StatsBomb 360 Freeze Frame data was also appended to the pass 
data and any observation missing freeze frame information was dropped from the analysis. Players 
with less than two seasons’ worth of data were dropped. Any player that did not have at least one 
completed pass and at least 50 attempted passes were also dropped. The final study sample 
consisted of 21,261 midfield attacking passes from 198 players and 27,598 wing attacking passes 
from 210 players for all 27 clubs in the data. 

 
 

5 Descriptive Statistics 
 
In this section, descriptive statistics for the study samples for analyses and model building are 
provided. Before discussing the actual study samples, we use goals scored in the Premier League 
to demonstrate that there are trends in the league that can be modeled and that there are players 
who perform at a level above the average trend. In Figure 4, the plot on the left shows the number 
of goals scored across all matches for each season, with Generalized Additive Model (GAM) 
smoothing to better show the overall trend across matches. There are clear fluctuations in the 
number of goals scored over the course of a given season. The right plot of Figure 4 shows the 
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same data, but in boxplot form. We can see that there are several individual players who score far 
above the average amount of goals each season.​
 
Figure 4: On the left, the plot displays total goals scored per match week across all five available EPL seasons. On the 
right, the boxplot displays the total number of goals by each individual in the dataset across all five seasons.  
   

 
 
5.1 Shots 
The descriptive statistics for the predictors used in the xG models are provided in Table 2. A few 
interesting statistics to note for the full model are: (i) approximately 30% of shots are under 
pressure by an opposition player, (ii) the frequency of shots taken by the head and the less 
preferred foot are roughly the same per percentages, and (iii) the average number of seasons 
players have spent in the Premier League in this sample are ~1.48 seasons.​
​
Table 2. Descriptive statistics for the expected goals (xG) models. The mean (standard deviation) are provided for 
continuous variables and count (percentage) are provided for categorical/binary variables. Continued onto the next page. 

Predictor Type Full Model Forwards Only 

Body Part 
Preferred Foot 

Other Foot 
Head 
Other 

 
Categorical 

 

 
25,337 (63.58%) 
7,357 (18.46%) 
6,997 (17.56%) 

159 (0.4%) 

 
13,098 (63.68%) 
4,209 (20.46%) 
3,183 (15.48%) 

78 (0.38%) 

Defenders In Shot Triangle Count 1.09 (1.11) 0.85 (0.96) 

Distance To Goal 
(SB2 units) 

Continuous 17.31 (7.48) 16.3 (6.81) 

2StatsBomb pitch units 
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Predictor Type Full Model Forwards Only 

Goalkeeper 
 In ShotCone 

Binary 38,593 (96.85%) 19,736 (95.95%) 
 

Shot Angle 
(radians) 

Continuous 27.07 (15.89) 27.75 (16.17) 

Under Pressure Binary 11,926 (29.93%) 6,136 (29.83%) 

Season Continuous 1.48 (1.27) 1.44 (1.28) 

 
When comparing the descriptive statistics between the full and forwards only models, we find 
some interesting differences: (i) the difference in other foot shots and headers is ~5% for forwards, 
(ii) the average shot distance decreases by roughly 1% in this analysis but does not change by a lot 
for angle, and (iii) forwards take shots with fewer average defenders in front of them compared to 
all players (including forwards). These findings in themselves can be converted into research 
questions related to model stratifications.  
 
5.2 Carries 
The descriptive statistics for the progressive carries model are summarized in Table 3. Some 
interesting discoveries to note are: (i) the standard deviation for carry distance is roughly 10.12 
StatsBomb pitch units, suggesting there is a lot of variability in distances, (ii) pressure is higher 
during the carry than after the carry, on average, and (iii) most of the carries start after a ball 
receipt rather than a dribble. Other types of events right before a carry are balls won from an 
interception, a ball recovery, and a 50-50 battle for the ball. These account for the remaining 
percentage for what happens to the carrier right before the carry event. 
 
Table 3. Descriptive statistics for the progressive carries model. The mean (standard deviation) are provided for 
continuous variables and count (percentage) are provided for categorical/binary variables. 

Predictor Type Midfield Statistic 

Duration 
(seconds) 

Continuous 0.67 (0.79) 
 

Carry Distance 
(SB3 units) 

Continuous 16.49 (10.12) 
 

Under Pressure 
During Carry 
After Carry 

Binary  
9,564 (54.65%) 
6,591 (37.66%) 

Event before Carry 
Ball Receipt 

Dribble 

Categorical  
14,149 (80.85%) 

1,580 (9.03%) 

Season Continuous 1.57 (1.3) 

 

3StatsBomb pitch units 
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5.3 Passes 
The descriptive statistics for both types of attacking passes are provided in Table 4. Interesting 
patterns that we would like to note are as follows: (i) passers from midfield are under pressure more 
than the wing (12.73% versus 8.3%), (ii) the variability of pass angles (per standard deviation) is 
much higher for wing passes, (iii) ground and high passes from midfield are evenly split in terms of 
percentages, but high passes account for the majority when they are from the wings. The third note 
is a finding that should be intuitive to any football fan as we usually see crosses from the wings. 
However, we can see that roughly 27% of the passes are on the ground which begs the question of 
“is there a significant difference when it comes to their effects on a successful pass”? 
 
Table 4. Descriptive statistics for attacking passes  models. The mean (standard deviation) are provided for continuous 
variables and count (percentage) are provided for categorical/binary variables. 

Predictor Type Midfield Statistic Wing Statistic 

Under Pressure Binary 2,707 (12.73%) 2,292 (8.3%) 

Pass Length  
(yards) 

Continuous 25.77 (13.09) 
 

27.27 (10.87) 
 

Pass Angle  
(radians) 

Continuous -0.03 (0.66) 
 

-0.04 (1.33) 
 

Distance to Closest Defender 
 (SB4 units) 

Continuous 3.93 (2.35) 
 

4.44 (2.43) 
 

Number of Defenders towards 
Goal ​

(Scaled) 

Count 7.08 (2.25) 5.08 (2.91) 
 

Pass Height 
Ground 

Low5 
High 

Categorical  
9,928 (46.7%) 
1,817 (8.55%) 

9,516 (44.76%) 

 
7,545 (27.34%) 
4,006 (14.52%) 
16,047 (58.15%) 

Body Part​
Preferred Foot 

Other Foot 
Head 
Other 

Categorical  
18,632 (87.63%) 

2,013 (9.47%) 
552 (2.6%) 
64 (0.3%) 

 

 
23,697 (85.86%) 

3,712 (13.45%) 
178 (0.64%) 
11 (0.04%) 

Season Continuous 1.58 (1.27) 
 

1.56 (1.31) 

 
 

 

5Low pass: Ball comes off the ground but is under shoulder level at peak height. 

 

4StatsBomb pitch units 
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6 Model Results 
For each model, a random intercept for every individual player in the respective study sample was 
included in the model build. A random slope on the season was incorporated into the xG and passes 
models. However, the carries model did not achieve convergence with the random slope. As a work 
around for the longitudinal analysis, we stratified the study sample data by the season and built a 
model for each to perform sensitivity analysis at the player level. For the predictor-level analysis, all 
available seasons were used in a GLMM with only a player random intercept. 
 
6.1 Shots 
The xG fixed effects for both forwards only and full models are provided in Table 7. The effects in 
the table are exponentiated and the results are interpretable as odds ratios. Effects greater than 
one are interpreted as having a positive multiplicative effect on the odds of a shot conversion. 
Whereas, effects that are less than one have a negative multiplicative effect. These effects are 
adjusted for all of the predictors in the model. 95% Wald confidence intervals (CI) are also provided 
for each of the predictor effects. A CI containing a value of one suggests that the relationship 
between the predictor and response is not statistically significant (similar to p-value > 0.05). Shot 
Angle has a positive predictor effect. The remaining variables in the predictor set have negative 
effects. However, it is important to note that the multi-categorical predictors are relative to their 
reference level. For example, the body part predictors demonstrate a negative effect or association 
with scoring a goal because they are compared to shots being taken by a player’s preferred foot. 
 
The following interpretations are provided for each type of a predictor for the reader’s reference. 
The interpretation style is the same for the predictors in all the other models in this paper as they 
are all GLMMs with binary outcomes. 
 
Shot Angle (Continuous Predictor): For a given player, an increase of one standard deviation (15.89 
degrees) from the average angle (27.07 degrees) is estimated to increase the xG value by 65% ([1.65 
- 1.00] x 100 = 65%) while adjusting for other predictors. 
 
Body Part; Other Foot (Categorical Predictor): For a given player taking a shot with their 
non-preferred foot, the xG is estimated to decrease by 21% ([0.89 - 1.00] x 100 = -21%) relative to 
taking it with their preferred foot while holding other predictors constant.  
 
Defenders in Shot Triangle (Count Predictor): For a given Premier League player, the appearance 
of an additional defender in the shot triangle is estimated to decrease the xG value by 34% ([0.66 - 
1.00] x 100 = -34%) while holding other predictors constant. 
 
It is important to note that these “effects” are interpreted as statistical associations and not causal 
effects. 
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Table 5. The odds ratios (predictor effects) and their respective 95% confidence intervals (CI) from the Expected Goals 
(xG) models. Bolded* numbers represent effects that demonstrate a statistically significant relationship with the target 
variable. The effects associated with scaled continuous predictors are interpreted on their respective standard deviation 
scale. 

Predictor Full Model 
Estimate 

Full Model 
95% CI 

Forward Model 
Estimate 

Forward Model 
95% CI 

Body Part 
Preferred Foot 

Other Foot 
Head 
Other 

 
ref. 

0.79* 
0.31* 
0.35* 

 
 

[0.719, 0.863] 
[0.278, 0.344] 
[0.229, 0.539] 

 
ref. 
0.79 
0.32 
0.45 

 
 

[0.704, 0.886]* 
[0.275, 0.367]* 
[0.248, 0.797]* 

Defenders In Cone 0.66* [0.638, 0.691] 0.61 [0.578, 0.651]* 

Distance To Goal 
(Scaled) 

0.60* [0.562, 0.645] 0.67 [0.611, 0.728]* 

Goalkeeper 
 In ShotCone 

0.45* [0.387, 0.515] 0.44 [0.37, 0.524] 

Shot Angle 
(Scaled) 

1.65* [1.571, 1.731] 1.71 [1.601, 1.828] 

Under Pressure 0.76* [0.705, 0.826] 0.82 [0.738, 0.905]* 

Season 1.03* [1.00, 1.063] 1.05 [1.007, 1.089]* 

 
6.2 Carries 
The predictor effects from the carries model is summarized in Table 8. We can see that duration 
and pressure during carry have positive relationships with the response variable. The latter 
association is quite interesting and unintuitive. However, the data here may suggest that the 
pressure on the carrier actually leads the player to make an on-ball decision that leads to a 
successful carry outcome. It would be of interest to test how the association would change if the 
definition was altered to something else in future research. Predictors with negative significant 
associations with the target variable are pressure on the carrier right after the carry, the carry 
starting after a dribble, and the distance of the dribble.  
 
Table 6.  GLMM results for the fixed effect predictors for the carry outcome model. All coefficients and 95%​
confidence intervals  have been exponentiated. Bolded* numbers represent effects that demonstrate a statistically 
significant relationship with the target variable. The effects associated with scaled continuous predictors are 
interpreted on their respective standard deviation scale. Continued onto the next page. 

Predictor    Estimate  95% CI 

Duration  
(Scaled) 

1.68* [1.61, 1.75] 

Carry Distance  
(Scaled) 

0.88* [0.86, 0.91] 

Under Pressure 
During Carry 

 
1.21* 

 
[1.11, 1.32] 
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After Carry 0.88* [0.80, 0.96] 

Event before Carry 
Ball Receipt 

Dribble 

 
0.98 

0.80* 

 
[0.86, 1.09] 
[0.69, 0.93] 

Season 0.98 [0.96, 1.00] 

 
6.3 Passes 
The fixed effects for the the passes models are summarized in Tables 9 and 10. The inferences for 
the predictor effects are left for the readers to draw. However, we want to note how some of the 
fixed effects differ between models both in terms of magnitude and directional relationship with 
the response variable. For example, the length of a pass has a negative relationship with the 
response for passes from midfield but it has a positive association with passes from the wing.This 
empirical difference in the findings can be a valuable insight for football practitioners especially 
coaches looking to optimize possession in different attacking zones of the pitch. A few interesting 
findings are that: (i) low and high passes decrease the odds of a completed pass as opposed to a 
ground pass and (ii) headed passes from the wing increase the odds of a completed pass. The 
finding about pass height is interesting because it may motivate coaches to prioritize ground 
passes from the wings rather than crossing in the ball. The second finding is quite unintuitive but 
this may be a consequence of a low sample size for headed passes (see Table 4). Additionally, the 
fixed effect has quite a wide confidence interval. 
 
Table 7. The odds ratios (predictor effects) and their respective 95% confidence intervals (CI) from the Attacking Midfield 
Passes model. Bolded* numbers represent effects that demonstrate a statistically significant relationship with the 
target variable. The effects associated with scaled continuous predictors are interpreted on their respective standard 
deviation scale.  Continued onto the next page. 

Predictor Estimate 95% CI 

Under Pressure 0.92 [0.842, 1.012] 

Pass Length  
(Scaled) 

0.79* [0.756, 0.815] 

Pass Angle  
(Scaled) 

1.00 [0.972, 1.03] 

Distance to Closest Defender 
 (Scaled) 

1.09* [1.057, 1.131] 

Number of Defenders towards Goal  
(Scaled) 

1.00 [0.963, 1.028] 

Pass Height 
Ground 

Low 
High 

 
Ref. 

0.35* 
0.32* 

 
 

[0.317, 0.391] 
[0.29, 0.341] 

Body Part​
Preferred Foot 

Other Foot 

 
ref. 
0.91 

 
 

[0.823, 1.004] 
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Head 
Other 

0.83 
0.62 

[0.493, 1.387] 
[0.508, 0.748] 

 

Season 1.017 [0.991, 1.043] 

 
Table 8. The odds ratios (predictor effects) and their respective 95% confidence intervals (CI) from the Attacking Wing 
Passes model. Bolded* numbers represent effects that demonstrate a statistically significant relationship with the 
target variable. The effects associated with scaled continuous predictors are interpreted on their respective standard 
deviation scale. 

Predictor Estimate 95% CI 

Under Pressure 0.83* [0.752, 0.923] 

Cut Back 1.14 [0.975, 1.341] 

Pass Length  
(Scaled) 

1.19* [1.145, 1.228] 

Pass Angle 
(Scaled) 

0.98 [0.949, 1.008] 

Distance to Closest Defender 
 (Scaled) 

1.00 [0.967, 1.025] 

Number of Defenders towards Goal  
(Scaled) 

1.15* [1.118, 1.185] 

Pass Height 
Ground 

Low 
High 

 
ref. 

0.23* 
0.19* 

 
 

[0.21, 0.25] 
[0.178, 0.208] 

Body Part​
Preferred Foot 

Other Foot 
Head 
Other 

 
ref. 

0.82* 
1.64* 
2.89 

 
 

[0.753, 0.889] 
[1.193, 2.264] 
[0.842, 9.934] 

Season 1.03* [1.010, 1.058] 

 
 

 
7 Estimated Player Impact Rankings 
The EPI measures are derived from the GLMMs and they represent players’ influence on the 
response variable of interest. For the xG models, the players are ranked by their position groups: (i) 
Forwards, (ii) Midfielders, (iii) Centre Backs, and (iv) Full Backs/Wing Backs. The random slopes are 
also provided for the longitudinal aspect of the analyses. Additional relevant metrics are also 
provided for each set of rankings for context. It is very important to note that these rankings do not 
suggest that one player is outright better than the other. Rather it provides the analyst a 
data-driven measure of how much impact a player has on the football action of interest compared 
to the rest of the study sample. The same can be said about the random slope. We encourage the 
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readers to challenge our findings by running their own analyses on players and also demonstrate 
how to improve the GLMMs.​
 
7.1 Expected Goals 
 
Table 9. Forward Estimated Player Impact (EPI) rankings from forwards only expected goals (xG) model. The difference in 
goals and StatsBomb xG is provided for additional insight. 

Findings from this table suggest that Heung-Min Son has the highest player impact on converting 
shots into goals. We also note that his slope is roughly zero further suggesting that his goal scoring 
impact does not change at a different rate than the population average of forward players in the 
study. For all five of the top players here, they demonstrate very small slope measures. Examples of 
players who demonstrated high positive slope values are (i) Bryan Mbeumo (+0.014), (ii) Chris Wood 
(+0.014), and (iii) Callum Hudson Odoi (+0.009).  
 
“Where is Erling Haaland?” We expect that the reader may have paused and wondered about this 
specific question. Haaland is ranked 12th in this analysis which includes forwards from the last five 
seasons. His EPI value is 0.14 (slope: -0.001)  which can be interpreted as a +0.14 increase in the 
log-odds of converting a shot into a goal or a 15% increase in goal odds. To explain why Son is 
ranked higher than Haaland, we first look at the StatsBomb xG for both of the players. Haaland has 
scored 68 goals from a total xG of 61.75, a difference of 6.25. Son has scored 69 goals from a total 
xG of 48.4, a 20.59 difference. This suggests that Son has scored from lower xG opportunities as 
opposed to Haaland. This can be one of the explanations behind our model findings even though 
this difference has no statistical connection to the GLMMs. However, the more interesting 
justification lies within how the GLMMs work. The predictors in a regression based model are used 
to explain the observed variance in the response variable. It is empirically rare to be able to fully 
explain the variance and there is always leftover variance that is unexplained. In the particular case 
of a hierarchical model, the random intercept attempts to explain some of the remaining variance: 
the player predictor explains differences in shot conversion. The findings in our analysis suggest 
that Heung-Min Son as a player can explain more of the variability in the response than Haaland 
can. In other words, Son is actually scoring goals, on average, from shots that have low-odds in 
terms of predictor effects. We can see this trend by comparing Haaland and Son’s descriptive 
statistics for their shots in Table 10 below.  
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Player EPI Slope Goals (xG) xG Difference 

Heung-Min Son 0.42 -0.001 69 (48.4) 20.59 

Phil Foden 0.29 +0.002 53 (34.3) 18.71 

Harry Kane 0.21 +0.002 57 (45.7) 11.32 

Marcus Rashford 0.20 -0.003 42 (32.1) 9.86 

Harvey Barnes 0.18 0.001 42 (29.7) 12.28 



 
Table 10. Summary statistics of shot predictors  for both Heung-Min Son and Erling Haaland used in the expected goals 
model. n represents the number of shots by each player.  The predictors are sorted by the magnitude of the fixed effect. 

Predictor Forward  xG Model 
Fixed Effect 

Son 
n = 365 (69 goals)  

Haaland 
n  = 336 (68 goals) 

Shot Angle 
(radians) 

1.71 24.68 (11.51) 36.02 (18.3) 

Body Part 
Preferred Foot 

Other Foot 
Head 
Other 

 
ref. 
0.79 
0.32 
0.45 

 
208 (57.0%) 
141 (38.6%) 

15 (4.1%) 
1 (<0.3%) 

 
186 (55.4%) 
48 (14.3%) 

100 (29.8%) 
2  (<0.2%) 

Goalkeeper 
 In Shot Cone 

0.44 358 (98.1%)   307 (91.4%) 

Defenders In Shot Triangle 0.61 0.83 (0.9) 0.59  (0.75) 

Distance To Goal 
(SB6 units) 

0.67 17.43 (6.5) 12.39  (5.13) 

Under Pressure 0.82 95 (26.3%) 130  (38.69%) 

 
We can see that Son’s average shot distance is 17.43  (standard deviation: 6.5) whereas Haaland’s 
shot distance is lower. The fixed effect for distance is 0.67 which implies that longer distances 
decrease goal-odds by a large amount. Regardless of this association, Son still shoots from a 
longer average distance and manages to score goals based on his finishing skill. 
 
Additionally, we also observe that Son has shot with his “Other Foot” 38.6% times but Haaland 
mainly shoots with his preferred foot or with his head. Headers are usually a consequence of the 
type of received pass whereas the choice of feet in shooting usually is left up to the player. We can 
also see that Haaland has a higher average shot angle than Son. This particular predictor 
significantly increases the odds of a goal whereas Son manages to score from average angles of 
approximately 25 degrees (in radians). The fixed effects analysis suggests that there are 
population-level trends that players can follow to improve their goal scoring opportunities. In this 
particular example, it looks like Haaland’s chances are, on average, more optimized for a goal than 
Son’s chances. This type of analysis is what makes the random intercepts a very powerful tool for 
player evaluation because it can capture latent behavior in how players choose to play the game of 
football. Son is a player who is comfortable shooting with both legs from tight angles whereas 
Haaland is a player who converts his high xG chances efficiently: two different types of players 
whose latent impact on goal scoring is quantified by the hierarchical models. Building hierarchical 
models using data from undertapped or undervalued leagues can lead to discovering talent who are 
not being tracked by classical models. 
 
 

6StatsBomb pitch units 
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Table 11. Forward Estimated Player Impact (EPI) rankings from full expected goals (xG) model. The difference in goals and 
StatsBomb xG is provided for additional insight. 

Player EPI Slope Goals (xG) xG Difference 

Heung-Min Son 0.512 -0.0310 69 (48.4) 20.59 

Phil Foden 0.358 -0.0154 53 (34.3) 18.71 

Marcus Rashford 0.257 -0.0143 42 (32.1) 9.86 

Harry Kane 0.252 -0.0112 57 (45.7) 11.32 

Harvey Barnes 0.23 -0.0104 42 (29.7) 12.28 

 
The top five rankings for the forwards barely changed with Rashford and Kane switching spots. The 
change in their EPI estimate is rather miniscule. However, what is more interesting here is the 
slope measures. When compared to every shot-taker, these players all demonstrate a decrease in 
their EPI over time at a higher magnitude than when compared to shot-takers. This finding 
suggests that there is indeed a trend difference when comparing players within position groups 
when it comes to xG EPI. 
 
Table 12. Midfielder Estimated Player Impact (EPI) rankings derived from the full expected goals model. 

Player EPI Slope Goals xG Difference 

James Maddison 0.321 -0.0176 37 (24.8) 12.16 

Kevin De Bruyne 0.267 -0.0141 32 (21.4) 10.58 

Matheus Cunha 0.222 -0.010 27 (15.6) 11.37 

Bruno Guimarães  0.217 -0.012 21 (14.3) 6.73 

Jesse Lingard 0.199 -0.013 10 (5.3) 4.69 

 
Current active players in the premier league who would break into the top 5 are Dejan Kulusevski 
(EPI: 0.183, Slope: -0.001) and Martin Odegaard (EPI: 0.181, -0.0083).  
 
Table 13. Centre back Estimated Player Impact (EPI) rankings from the full expected goals (xG) model. 

Player EPI Slope Goals xG Difference 

Michael Keane 0.20 -0.008 11 (5.4) 5.57 

John Stones 0.14 -0.006 10 (5.1) 4.85 

Thiago  Silva 0.12 -0.006 8 (4.8) 3.21 

Kurt  Zouma 0.11 -0.007 11 (7.0) 4.01 

Trevoh Chalobah 0.11 -0.006 7 (3.8) 3.17 

 
The two highest goal scorers by volume are Gabriel (12 goals) from Arsenal and Virgil van Dijk (12 
goals) from Liverpool. Both of them have xG values of 14.3 and 11.1 xG respectively suggesting that 
they are usually converting the higher xG chances, on average when attempting to score a goal. A 
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reasonable takeaway is that players here are individuals who improve the odds of lower xG chances. 
However, we want to make the point that individual-level analysis on centre backs through 
frequentist hierarchical models is not as statistically sound due to low sample sizes for the players. 
 
Table 14. Fullback/Wingback Estimated Player Impact (EPI)  rankings from the expected goals (xG) model. 

Player EPI Slope Goals (xG) xG Difference 

Stuart Dallas 0.14 -0.010 9 (5.4) 3.58 

 Olaoluwa Aina 0.124 -0.005 5 (1.6) 3.40 

Jack Hinshelwood 0.121 -0.007 8 (4.5) 3.46 

Joško Gvardiol 0.08 -0.005 9 (7.4) 1.63 

Pedro Porro 0.066 -0.004 8 (4.9) 3.07 

 
7.2 Carries into Box 
 
Table 15. Estimated Player Impacts (EPI) rankings of Carriers into the Box. OBV refers to StatsBomb’s On-Ball value 
metric. +EPI refers to a positive EPI value.  

Player EPI Successful 
Carries (% Total) 

+EPI 
Seasons (Total) 

Post-Carry 
OBV per match 

Jack Grealish 0.399 207 (55%) 5 (5) 0.22 

Martin Ødegaard 0.393 80 (60%) 5 (5) 0.10 

Jadon Sancho 0.388 107 (58%) 3 (4) 0.15 

Bernardo Silva 0.376 113 (58%) 5 (5) 0.11 

Emile Smith Rowe 0.372 36 (64%) 4 (4) 0.18 

Heung-Min Son 0.343 138 (53%) 5 (5) 0.19 

Callum 
Hudson-Odoi 

0.322 88 (57%) 4 (4) 0.14 

Emmanuel Dennis 0.316 41 (55%) 1 (2) 0.13 

Amad Diallo 0.28 45 (52%) 2 (2) 0.16 

Willian 0.255 41 (57%) 3 (4)  0.08 

 
The carries model did not converge for the random slope. As a consequence, we stratified by 
season and ran a separate model for each of the available seasons in the dataset. Jack Grealish 
ranks as the best progressive carrier into the box even with the large volume of attempted carries. 
He also had a positive EPI value in all of his seasons which were spent playing at Aston Villa and 
Manchester City, demonstrating that he is a robust player when it comes to progressive carries into 
the box. Emile Smith Rowe is also an interesting player in this table as he has played for Arsenal but 
departed for Fulham due to lack of playing minutes. 
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7.3 Passes into Box​
 
Table 16. Estimated Player Impacts (EPI) rankings for attacking passes into the box from midfield. A shot assist is a pass 
that is converted into a shot. 

Player EPI Slope Completed 
Passes (% Total) 

Shots Assists (per 
match) 

Jack Grealish 0.165 0.039 100 (76%) 21 (0.31) 

Rodri 0.138 0.078 133 (57%) 16 (0.16) 

Granit Xhaka 0.108 -0.001 84 (62%) 20 (0.29) 

Declan Rice 0.094 0.043 97 (62%) 21 (0.23) 

Moisés Caicedo 0.069 0.031 69 (61%) 14 (0.21) 

 
Jack Grealish ranks as number one in this category on top of the carries rankings. This makes him a 
very interesting figure as he has recently departed for Everton (on loan) from Manchester City in 
2025/2026. Both Declan Rice and Moisés Caicedo appear in this table. These two players were two 
of the most expensive transfers in recent history and both have a positive slope from the model 
emphasizing their improvement over time (relative to the player population). Players who have 
demonstrated high slope values are Rodri (+0.078), Bruno Fernandes (+0.047), and Phil Foden  
(+0.044). 
 
Table 17. Estimated Player Impacts (EPI) rankings for attacking passes into the box from the wings. A shot assist is a pass 
that is converted into a shot. 

Player EPI Slope Completed 
Passes (% Total) 

Shots Assists (per 
match) 

Adam Smith 0.328 -0.054 43 (47%) 21 (0.43) 

Mohamed Salah 0.319 -0.079 170 (47%) 38 (0.27) 

Leandro Trossard 0.296 -0.026 127 (45%) 29 (0.22) 

Wilfried Zaha 0.274 -0.004 73 (58%) 14 (0.23) 

Jadon Sancho 0.258 -0.0192 67 (60%) 17 (0.30) 

 
Adam Smith from AFC Bournemouth ranks as the number one player when it comes to EPI on 
attacking passes into the box from the wing. This is a finding that can be viewed as an anomaly by 
the regular football supporter. However, a finding like this can lead to interesting data-driven 
investigations. We leave it to the reader to challenge or support this discovery. Players who have 
demonstrated high slope values are Bukayo Saka (+0.050), Neco Williams (+0.038), and Harvey 
Barnes (+0.037). 

​
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8 Case Study: Oliver Glasner’s Crystal Palace 
Oliver Glasner took over as the manager of Crystal Palace Football Club before matchweek 26 in the 
2023/2024 season. Since then, his side have won two trophies by beating Pep Guardiola’s 
Manchester City in the 24/25 FA Cup final and Arne Slot’s Liverpool, the defending Premier League 
Champions, in the 2025 FA Community Shield. On top of those two trophies,  Palace are also 
competing in their debut European campaign in the 2025/2026 season. Considering Crystal 
Palace’s history, all of these achievements are truly remarkable for all parties involved at the club 
from South London. 
 
Motivated by their recent successes and the departure of Eberechi Eze to Arsenal, we perform a 
data driven case study on Crystal Palace using the hierarchical models in this paper. The purpose of 
this case study is to demonstrate how one could leverage these advanced but intuitive models into 
their player scouting and evaluation process. We do not make any claims that the models we have 
built here are the best nor that they should be the gold standard. However, we hope that this case 
study gives football practitioners, researchers, journalists, and especially students inspiration to 
add hierarchical models into their data analysis toolkit. As a matter of fact, we encourage anyone to 
take our work and improve upon it. 
 
8.1 Attacking Data Trends 
The primary focus of this case study will be on the attacking side of Glasner’s team particularly how 
they attack the opposition penalty box. The carries and pass models in this paper will be handy 
tools in this study. Based on descriptive data analysis in Tables CP1 and CP2, we can observe that 
Palace have started in a 3-4-2-1 formation 31 times in the 24/25 season. Even during the matches, 
Glasner has opted to make a tactical shift to the 3-4-2-1 a total of 23 times which accounts for 46% 
of all of the formation switches as tracked by Hudl StatsBomb’s data 
 
Table CP1. Starting formation statistics for Crystal Palace FC (2024/2025 season) 

Starting Formation Count 

3-4-2-1 31 

3-4-3 6 

3-5-2 1 

​
Table CP2. Tactical Formation shift statistics for Crystal Palace (2024/2025 season). Continued onto the next page 

Tactical Shifts during Match Play Count (% of Shifts) 

3-4-2-1 23 (46%) 

3-4-3 6 (12%) 

3-5-2 6 (12%) 

4-4-2 5 (10%) 
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3-5-1-1 5 (10%) 

4-2-3-1 4 (8%) 

4-3-3 1 (2%) 

 
Due to the nature of this formation, it is reasonable to assume that Glasner leverages his wing 
backs in the attacking phases of play. This is supported by an analysis of the open play touches by 
all of the Crystal Palace fullbacks and wingbacks in Figure CP1. We can see that the wingbacks also 
venture into the right sided half spaces (zones 4, 9, and 14) quite a bit as well.​
 

 
 
Figure CP1. Visualization of open play touches in the attacking half of the football pitch by players who fall under the 
fullback or wingback category at Crystal Palace (2024/2025 season). 
 
Table CP3 breaks down the touch statistics by position group and the players in each group. Crystal 
Palace midfielders rank as the highest when it comes to overall open touches in the opposition half. 
However, we can see that Daniel Muñoz and Tyrick Mitchell rank as the 2nd and 4th players in terms 
of touch count. This further supports the involvement of the wing backs in Glasner’s attack.  
 
Table CP3. Breakdown of touches by position groups and players at Crystal Palace (2024/2025 season). 

Position Group Open Play Touches Top 3 Players Open Play Touches 

Midfielder 2,836 E. Eze 
I. Sarr 

J. Lerma 

631 
541 
383 
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Wing/Full Back 1,251 D. Muñoz 
T. Mitchell 

N. Clyne 

616 
525 
60 

Forward 842 J-P Mateta 
E. Nketiah 
O. Édouard 

524 
274 
25 

Centre Back 752 M. Guehi 
M. Lacroix 
C. Richard 

350 
164 
115 

 
In terms of attacking passes, Crystal Palace tend to attack the box from the wings more often than 
other parts of the pitch. This can be seen in Figure CP2. Zones 1 and 5 have the highest number of 
passes and the black arrows represent the most common passes into the box from these zones. We 
can see that the passes are pinged into the middle of the box for teammates to receive or shoot the 
ball. Figure CP3 further supports the wingbacks’ involvement by showing that Mitchell and Muñoz 
rank in the top two for most passes attempted into the box. Additional inferences that we can draw 
from this plot is that Ismaila Sarr and Eze are also highly involved in the attacking passing phases of 
play. After Eze, Adam Wharton attempted 56 passes into the box which is a 30% drop from Eze’s 
number. 
 
Figure CP2. Visualization of the attacking passes into the box by Crystal Palace players in the 2024/2025 Premier League 
season. The coral orange arrows represent each individual pass. The black arrows represent the average passes from 
zones 1 and 5. The darker the green color for the zone, the more passes originated from that zone and vice versa. 

 
Table CP4 summarizes the breakdown of passes by the top five zones for attacking passes. For 
zone 1, Mitchell accounts for the majority of passes and also leads the club in terms of shot assists 
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(which is a measure of a pass being converted into a shot). However, for zone 5, Daniel Muñoz does 
not rank as number one instead we see that Sarr, a midfielder, accounts for 39 of the total passes. 
Daniel Muñoz does rank as the highest passer from Zone 10 which is also part of the wing. Zones 1 
and 5 led to the highest number of shot assists for Palace demonstrating the importance of these 
zones and the wingbacks in  Glasner’s system.  
 
Figure CP3. Frequency plot summarizing the top 10 players who attempt passes into the opposition penalty box. The plot 
is arranged by pass attempts and the number in the parenthesis represents the count of passes converted into shots. 

 
 
Table CP4. Statistical breakdown of passes, pass completion rate (success %), and shot assists  by zone and by players 
for Crystal Palace during the 2024/2025 season. Continued onto the next page. 

Zone Passes  
(Success  %) 

Shot  
Assists 

Player Passes  
(Success %) 

Shot 
Assists 

Zone 1 106 (37%) 19 T. Mitchell 
J-P Mateta​

E. Eze 

60 (38%) 
10 (20%) 
8 (50%) 

10 
0 
2 

Zone 5 116 (34%) 18 I. Sarr 
D. Muñoz 

J-P Mateta 

39 (33%) 
34 (41%) 
9 (22%) 

5 
9 
1 

Zone 8 79 (61%) 14 I. Sarr 
E. Eze 

J-P Mateta 

15 (80%) 
14 (57%) 
8 (88%) 

4 
3 
4 

Zone 9 75 (52%) 9 I. Sarr 
A. Wharton 
W. Hughes 

16 (75%) 
15 (33%) 
12 (50%) 

3 
0 
1 

Zone 10 82 (31%) 6 D. Muñoz 35 (26%) 1 
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I. Sarr 
A. Wharton 

11 (18%) 
10 (40%) 

0 
2 

 
As for progressive carries into the box, the most common carry zones are zones 7, 8, and 9. Figure 
CP4 and Table CP5 support this claim. Both Eze and Sarr played as no. 10’s in Glasner’s team and 
they accounted for the most carries into the box by Palace players (see Figure CP5). Most of Eze’s 
carries are from zone 7 and Sarr’s carries are from zone 10. The black arrows illustrate the average 
carries from both of these zones. We can see that the average carries do not go deep into the box 
as the passes in Figure CP2. This suggests that both of these players initiate a different action as 
soon as they enter the box. Zone 8 is also a common origin for carries into the box for Palace which 
both Eze and Sarr rank in the top three. StatsBomb On-ball value (OBV) measures are included in 
Table CP4 to provide an additional layer to the analysis. OBV is a value that is assigned to an on-ball 
action based on the action’s impact on the probability of scoring a goal for the team. 
 
Figure CP4. Visualization of the progressive carries  into the box by Crystal Palace players in the 2024/2025 Premier 
League season. The coral orange arrows represent each individual carry. The black arrows represent the average carries 
from zones 8 and 9. The darker the green color for the zone, the more carries originated from that zone and vice versa. 
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Figure CP5. Frequency plot summarizing the top 10 players who performed progressive carries  into the opposition 
penalty box. The plot is arranged by frequency  and the numbers in the parenthesis represent the Hudl StatsBomb on-ball 
value (OBV) after the carry action and the net OBV after the carry action respectively. 

 
 
Table CP5. Statistical breakdown of carries by zone and by players for Crystal Palace during the 2024/2025 season 

Zone Carries  
 

OBV  
(Net OBV)  

Player Carries OBV 
(Net OBV) 

Zone 7 33    2.37 (1.16) E. Eze 
J-P Mateta 
T. Mitchell 

10 
7 
4 

0.73 (0.35) 
0.54 (0.29) 
0.36 (0.19) 

Zone 8  28 2.48 (0.95) E. Eze 
E. Nketiah 

I. Sarr 

6  
4 
4 

0.59 (0.23) 
0.31 (0.13) 
0.43 (0.21) 

Zone 9  30 2.09 (0.94) I. Sarr 
D. Muñoz 

D. Kamada 

9 
7 
3 

0.56 (0.25) 
0.52 (0.25) 
0.22 (0.11) 

 
8.2 Estimated Player Impacts for Scouting 
Motivated by these findings, we use the carries and pass models in our paper to provide 
complementary analyses for the Crystal Palace scouting team. Naturally, since this is an academic 
paper, we did not get to work with real-world scouts for this hypothetical case study. Therefore, we 
make some assumptions to demonstrate how the models can be used. It is important to remind 
the reader that the models and analyses can be tweaked based on what the football practitioner or 
client is truly interested in. For this study, we create the scenario such that the scouting team at 
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Palace is specifically looking for players who would complement Mitchell and Muñoz as competition 
for the upcoming season. They are interested in Premier League players who have demonstrated 
higher shot assists than both Muñoz and Mitchell. To help with this scouting, we filter for players 
who have higher shot assists per match, per season, and higher EPI values for attacking passes into 
the box from the wing. The analysis is summarized in Figure CP6. The scouts and analysts can then 
use this visual to perform additional tactical analysis or scouting on players they deem interesting 
or reasonable for Glasner’s side. For example, extensive analysis on Sergio Reguillon could be of 
interest since he has already played for three different Premier League clubs but he demonstrates 
higher measures than Mitchell on all accounts in this specific analysis. Similar analyses are done for 
Eze who departed the club this season. The findings are summarized in Figure CP7. The two 
additional metrics used in this demo analysis are OBV after the carry per season and per match. 
Additionally, the EPI on carries into the box are included in the analysis. Based on this analysis, we 
can actually see that Ismaila Sarr has higher measures for all three metrics than Eze. This suggests 
that Palace already have a capable player in Sarr to play the Eze role from a carries perspective. It is 
interesting to note that all the other players that demonstrated higher values than Eze are players 
who play for the “Big Six” clubs in England. This makes them less feasible as candidates for an Eze 
replacement. So, we relax the requirement and look at players who are within 0.04 units of Eze’s 
OBV measures. This leads to identifying Emile Smith Rowe at Fulham. Depending on the needs, the 
analyst can relax the filter even further.​
 
Figure CP6. Scatterplot of players who are possible replacements or competition for Tyrick Mitchell at Crystal Palace. 
The y-axis represents shot assists per match, the x-axis represents shot assists per season, and the size of the dot 
represents the magnitude of the estimated player impact for attacking passes into the box. 

​
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Figure CP6. Scatterplot of players who are possible replacements or competition for Eberechi Eze at Crystal Palace. The 
y-axis represents the on-ball value (OBV)  per season, the x-axis represents the OBV per match, and the size of the dot 
represents the magnitude of the estimated player impact for carries into the box.  

​
 
Figure CP7. Scatterplot of players who are possible replacements or competition for Daniel Muñoz  at Crystal Palace. The 
y-axis represents shot assists per match, the x-axis represents shot assists per season, and the size of the dot 
represents the magnitude of the estimated player impact for attacking passes into the box. 
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We also provide an additional analysis for Daniel Muñoz’s competition/replacement to further 
demonstrate that these models can be adjusted for different types of analysis based on the football 
needs of the scouting team or coach. 

 

​
9 Discussion 
 
9.1  Findings 
In this research, we successfully built and implemented GLMMs that enable the longitudinal 
analysis of football players using event-level data. Through this framework, we were also able to 
estimate player-specific impacts on football actions of interest and adjust for both individual player 
variability and temporal trends across seasons through random parameters. Furthermore, we 
extended the hierarchical modeling approach to two additional football actions, demonstrating the 
flexibility of this framework in capturing football analytics beyond just xG evaluation. The models 
provided robust, generalizable inferences about the relationships between key predictor and 
response variables within a football context as well. Our paper highlights how multilevel structures 
can effectively account for player skill differences and repeated measures over time. Finally, we 
conducted a case study to illustrate how football analysts can leverage hierarchical models in 
practical applications such as player evaluation and scouting. This exercise reinforces the practical 
utility and interpretability of the approach, emphasizing how GLMMs can bridge the gap between 
academic statistical modeling and applied football analytics.​
 
9.2 Future Work 
We would like to extend our analysis in several directions. The event data can be analyzed either at 
the match level, the week level, or the season level, depending on the research question at hand. 
Analyzing data on the match level would allow us the most granular view of individual player 
trajectories, but it is also computationally expensive, especially with the number of players and 
matches in the dataset. An extension to the GLMM framework that we would also like to explore is 
the Generalized Additive Mixed Model (GAMM), which is a semi-parametric (or even non-parametric) 
framework that can “smooth” out the noise from large volumes of data to detect the overall trends. 
Careful selection of the specific functional forms for the GAMM is essential, which will require us to 
do extensive model comparisons across training and test datasets to ensure that we have fit the 
data well with our selected models.  
 
9.3 Bayesian Methods 
Another aspect we would like to explore further is how to better quantify the uncertainty 
surrounding both the data and our resulting estimates. Although the Hudl StatsBomb data is 
incredibly precise at the match level, we know that the nature of the sport means that the 
probability of shot conversion or a successful pass is highly variable and can change quickly, 
depending on multiple factors during a game. This means that it may be equally useful to have 
uncertainty intervals around our estimates so that we have some sense of the upper and lower 
bound on the probability of shot conversion or other football actions. Bayesian methods provide a 
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natural way for quantifying this uncertainty, since the final output is a distribution of possible 
values, rather than a single point estimate. In particular, Bayesian methods could potentially 
alleviate the random slope convergence issues we faced with the carry models, since we can place 
a weakly informative prior on the distribution of the random slope, which should help with 
estimating the individual differences [25]. Due to time constraints, we were not able to fully explore 
this research direction, but we leave it open for future research. 
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