STATSBOMB

Accessing & Working With
StatsBomb Data InR

What Is R and Why Use It?

Ris a programming language that is useful for managing large datasets.
It is especially useful in the world of football data, as it allows us to manipulate that data to various ends.
Such as creating metrics out of the data and visualising it.

R itself can be downloaded here:

https://cran.r-project.org/mirrors.html

We at StatsBomb use R regularly (amongst other coding languages) in day-to-day work, particularly within
our analysis department. Spreadsheets are a viable route when you’re just starting out, but eventually the
datasets become too big and unwieldy, performing nuanced dissection of them becomes too complicated.

Once you’ve gotten over the learning curve, R is ideal for parsing data and working with it however you like
in a fast manner.

STATSB2MVB

https://cran.r-project.org/mirrors.html

RStudio

The base version of R is a somewhat cumbersome piece of software. This has lead to the creation of many
different ‘IDE’s (integrated development environment). These are wrappers around the initial R install that
make most tasks within R easier and more manageable for the end user. The most popular of these is

RStudio:
https://www.rstudio.com/products/rstudio/

It is recommended that you install RStudio (or any similar IDE that you find and prefer) as most users do. It
will make working with StatsBomb’s data a cleaner, simpler process.

®Studi0®

STATSB2MVB

https://www.rstudio.com/products/rstudio/

Opening a New R Project

This (minus the annotations of
course) is what you should see
when you load up R Studio.

If you’re wondering what a
particular option or section of R
Studio does, then there’s a handy
set of cheat sheets for it and many
other R-related subjects at
https://www.rstudio.com

/resources/cheatsheets/

There are a well of resources out
there with detailed answers to just
about any question you could have
related to R.

STATSB2MVB

Source Editor

Navigate Openinnew Save Findand Compileas Run

Tab Panes

Importdata Historyof past Manage View Rtutorials

previouscode wjout Echoor outline
as a Local Job
essesareens Multiple cursors/column selection
with Alt + mouse drag.

Code diagnostics that appear in the margin.
11 Hover over diagnostic symbols for details.

Syntax highlighting based
on your file's extension

16 .. Tab completion to finish function

i; names, file paths, arguments, and more.

19 (S varicble) in $[2:vecact) [

20 r D

21 = 2

2] “Multi-language code snippets to

23 quickly use common blocks of code.

24

25 Jump to function in file Change file type

% H

11 (Top Level) 2 R Séript =
Console Terminal R Markdown Jobs =
R R4LO - -/Ouskop/asn) i P
51% f s Workmg . Runscriptsin Maximize,
1373 Directory ™, separate sessions minimize panes

~Ctrl/Cmd +4 ™R Markdown Drag pane
to see history Build Log boundaries

backwards/ window replaoe notebook selected wuthwmard commandsto external memory .~
forwards ~ / - ~“code run/copy ,databases usage .
© -10p| @] | Gt A o .‘,5 -8 - w.m = z) B rp -
s; unon.l\:“d .“.5-‘.1957} o' seripy 7 & = 2 Witory, | Conngct .‘n....w-"'o':'a- Tutorial —=
7| source on Save #Source « = + 5} # Import Dataset = % 148 Mig ~ ,{ List «
PG00d St e 000 ciqamen T et f K Z ﬁtroasrsnwmmm - Q t
Re-run Source With or Show |le i :
Load Save ClearR Search inside

workspace i workspace workspace environment

Display objec’ts

Choose environment to display from
list of parent environments as list or grid
Data
O af 3 obs. of 2 varicbles
Values

x 1
Functions

foo function (x) oy e
Displays saved objects by View in data View function
type with short description viewer source code
Files Plots Packages Help Viewer -
o New Folder @ Delete o Rename More -

i A Home Du;uop aup o More file ® .
H A:Nam« ' H oY odlfied ¢

wow. Options

Copy Folder Pas to Clighours

Create Delete Rename Change':
folder § file file AR directory

©a To Werking Drectery
pes New Terminal Here

Path to displayed directory RS
@) appRr Snonw Wisdon Vil 110, 2021, 6:21 PM
¥ app.Rpro) 3038 Jul 10, 2021, 4:51 PM

A File browser keyed to your working directory.
Click on file or directory name to open.

https://www.rstudio.com
https://www.rstudio.com

Whatis an ‘R Package™?

‘Packages’ are downloadable bundles of functions that make tasks easier. Most packages are installed by
running install.packages(‘PackageNameHere’). However, if the package comes via Github we use the devtools
package to install it (this includes StatsBombR, which we will walk through installing on the next page).

The main packages we will focus on here and which need installing are:
‘tidyverse’: tidyverse contains a whole host of other packages (such as dplyr and magrittr) that are useful for
manipulating data. install. packages(“tidyverse”)

‘devtools’: Most packages are hosted on CRAN. However there are also countless useful ones hosted on
Github. Devtools allows for downloading of packages directly from Github. install.packages(“devtools”)

‘ggplot2’: The most popular package for visualising data within R. It is contained within tidyverse.
‘StatsBombR’: This is StatsBomb’s own package for parsing our data.

Once a package is installed it can be loaded into R by running library(PackageNameHere). You should load all
of these at the start of any session.

STATSB2MVB

What is ‘StatsBombR’ and how to Install It?

StatsBomb’s former data scientist Derrick Yam created ‘StatsBombR’, an R package dedicated to making using
StatBomb’s data in R much easier. It can be found on Github at the following link, along with much more
information on its uses. There are lots of helpful functions within it that you should get to know.

https://github.com/statsbomb/StatsBombR

To install the package in R, you’ll need to install the ‘Devtools’ package, which can be done by running the
following line of code:

install.packages("devtools”)
install.packages("remotes”)
remotes::install_version("SDMTools", "1.1-221")

Then, to install StatsBombR itself, run:

devtools:install_github("statsbomb/StatsBombR")

STATSB?MB R

STATSB2MVB

https://github.com/statsbomb/StatsBombR

Finding More Info On Packages

If you want more detail on the various functions within

a package then click on the package’s name in the
viewer in the bottom right. That will take you to the

documentation for that package. It should contain all
sorts of information on the ins and outs of its functions.

STATSE?MB

Files Plots Packages Help Viewer
B install |) Update Q

Name Description
3 r Translate CSS Selectors to XPath
Expressions
R Session Information
Classes and Methods for Spatial
Data
Cleans and pulls StatsBomb data
from the API
Character String Processing Facilities 1.53

|

Simple, Consistent Wrappers for 14.0
Common String Operations

Powerful and Reliable Tools for 34
Running System Commands in R

Unit Testing for R

Simple Data Frames

Tidy Messy Data

=]
@

B R: Cleans and pulls StatsBomb data from the API = a

Cleans and pulls StatsBomb data from the API R

N R

DRAY

Documentation for package ‘StatsBombR’ version 0.1.0

« DESCRIPTION file

Help Pages
aliclean Returns a data frame with all of the original data frame all cleaned for R with extra information added
alllineups This function returns all lineups from the matches specified in the arguments.
alimatches This function returns all events from the matches specified in the arguments.
cleanlineups This function unnests all lineups and returns a cleaned data frame.
cleanlocations This function cleans all of the location variables in a StatsBomb data frame.
competitions This function returns all competitions that StatsBomb has data for.
defensiveinfo This function returns the defensive information from the shot freeze frame variable
formatelapsedtime ;I:::lsag:ve\ctlon uses the timestamp and period information to create an elapsed time from the beginning of the match
EreeCompetitions This function returns all competitions that are released as free data from StatsBomb.com.
yerNickname This function returns and joins player nicknames from the free lineups API into the event data.

This function returns all free matches that are released as free data from StatsBomb.com.

freezeframeinfo This function returns the defensive information from the shot freeze frame variable.

This function returns additional variables for the game state, score and opposing score. It also returns a dataframe
of the time each team spent winning.
get.lineups This function returns all lineups for the match specified in the arguments.

This function returns all lineups for the match requested. This is for use with the freely released data from
gellineugstee StatsBomb.com.
getmatches This function returns all matches from the specified season and competition
This function returns all events for the match requested. This is for use with the freely released data from
StatsBomb.com.
This function returns the players from each match, the number of minutes played and the times of their
substitution, if applicable

get.gamestate

get.matchFree

getminutesplayed

get.opposingteam This function joins the opposing team in each match to all events in the data frame.
getplayerfootedness This function returns defines a player's footedness based on the percent of time they use each foot

getmatch This function returns all events for the match specified in the arguments

Key Functions for Getting the Free Data

There are several key functions within StatsBombR to familiarise
yourself with for bringing StatsBomb Data into R.

FreeCompetitions() - This shows you all the competitions that are available as free data

If you want to store the output of this (or any other functions) so you can pull it up at any time, instead of just
havingitin the R console, you can run something like the following:

Comp <- FreeCompetitions(). Then, anytime you run Comp (or whatever word you choose to store it under,
you can go with anything), you will see the output of FreeCompetitions().

Matches <- FreeMatches(Comp) - This shows the available matches within the competitions chosen

StatsBombData <- free_allevents(MatchesDF = Matches, Parallel = T) - This pulls all the event data for the
matches that are chosen.

STATSB2MVB

Pulling the Free Data

Now we’re going to run through an example of how to pull the data into R. Open up a new ‘script’, so we can store this
code and have it easily accessible, by going to File -> New File -> R Script. This script can be saved at any time.

library(tidyverse)
library(StatsBombR) #1

Comp <- FreeCompetitions() %>%
filter(competition_id==37 & season_name=="2020/2021") #2

Matches <- FreeMatches(Comp) #3
StatsBombData <- free_allevents(MatchesDF = Matches, Parallel = T) #4

StatsBombData = allclean(StatsBombData) #5

STATSB2MVB

#1: tidyverse loads many different packages. Most important for this task
are dplyr and magrittr. StatsBombR loads StatsBombR.

#2: This grabs the competitions that are available to the user and filters it
down, using dplyr’s ‘filter’ function, to just the 2020/21 FA Women’s Super
League season in this example.

#3: This pulls all the matches for the desired competition.

#4: Now we have created a ‘dataframe’ (essentially a table) called
‘StatsBombData’ (or whatever you choose to call it) of the free event data
for the FAWSL season in 2020/2021.

#5: Extracts lots of relevant information such as x/y coordinates. More
information can be found in the package info. Be sure to familiarise
yourself with the columns it creates using names(nameofyourdfhere).

Getting to Know the Data

On our Github page - where our free data is hosted - we have put the specification documents for StatsBomb
Data. These are available to view or download at any time and will hopefully answer any questions you may
have about what a certain event type is or any similar inquiries.

These documents include:

Open Data Competitions v2.0.0.pdf - Covers the objects contained within the competitions information
(FreeCompetitions()).

Open Data Matches v3.0.0.pdf - Describes the match info download (FreeMatches()).

Open Data Lineups v2.0.0.pdf - Describes the structure of the lineup info (getlineupsFree()).

Open Data Events v4.0.0.pdf - Explains the meaning of the column names within the event data.

StatsBomb Event Data Specification v1.1.pdf - The full breakdown of all the events within the data.

STATSB2MVB

https://github.com/statsbomb/open-data/blob/master/doc/Open%20Data%20Competitions%20v2.0.0.pdf
https://github.com/statsbomb/open-data/blob/master/doc/Open%20Data%20Matches%20v3.0.0.pdf
https://github.com/statsbomb/open-data/blob/master/doc/Open%20Data%20Lineups%20v2.0.0.pdf
https://github.com/statsbomb/open-data/blob/master/doc/Open%20Data%20Events%20v4.0.0.pdf
https://github.com/statsbomb/open-data/blob/master/doc/StatsBomb%20Open%20Data%20Specification%20v1.1.pdf

Data Use Cases

Now that we have our StatsBombData file, we’re going to run through some ways you can use the data and
familiarise yourself with R in the process. There will be four use cases, increasing in complexity as they go:

Use Case 1: Shots and Goals - A simple but important starting point. Here we will extract shots and goals
totals for each team, then look at how to do the same but on a per game basis.

Use Case 2: Graphing Shots On a Chart - After we have the shots and goals data, how can we take that and
create a starter chart from it?

Use Case 3: Player Shots Per 90 - Getting shots for players is simple enough after doing so for teams. But
then how can we adjust those figures on a per 90 basis?

Use Case 4: Mapping Passes - Filtering our data down to just a subset of passes and then using R’s ggplot2 to
plot those passes on a pitch.

STATSB2MVB

Data Use Case 1: Goals and Shots

shots_goals = StatsBombData %>%

group_by(team.name) %>% #1

summarise(shots = sum(type.name=="Shot", na.rm = TRUE),
goals = sum(shot.outcome.name=="Goal", na.rm = TRUE)) #2

Let’s break that down bit by bit:

#1: This code groups the data by team, so that whatever operation we perform on it will be done on a team by
team basis. I.e, we will find the shots and goals for every team one by one.

#2: Summarise takes whatever operation we give it and produces a new, separate table out of it. The vast
majority of summarise uses come after group_by.

shots = sum(type.name=="Shot", na.rm = TRUE) is telling it to create a new column called ‘shots’ that sums up
all the rows under the ‘type.name’ column that contain the word “Shot” na.rm = TRUE tells it to ignore any NAs
within that column.

shot.outcome.name=="Goal", na.rm = TRUE) does the same but for goals.

STATSB2MVB

Data Use Case 1: Goals and Shots |t

Manchester United

Arsenal WFC

You should now have a table that looks like this.

Reading WFC

. . . Everton LFC Totals
If we want to do this same calculation but on a per game basis, e

we can change it to: Brighton & Hove Albion WEC

Tottenham Hotspur Women

shots_goals = StatsBombData %>%
group_by(team.name) %>%
summarise(shots = sum(type.name=="Shot", na.rm = TRUE)/n_distinct(match_id),

Bristol City WFC

Aston Villa

goals = sum(shot.outcome.name=="Goal", na.rm = TRUE)/n_distinct(match_id)) Sxaniri bz Cay WG
Adding in the ‘n_distinct(match_id) means we are dividing the ST e s
number of shots/goals by each distinct (or unique) instance of a Manchester City WFC 19318182 28181818
match, for every team. l.e, we are dividing the numbers per game. e Ltk nes
Arsenal WFC 16.772727 23181818
Reading WFC 12863636 1.0909091
Per Game Everton LFC 11545455 17727273

West Ham United LFC 10409001 0.3181818
Brighton & Hove Albion WFC ~ 9.590909 0.9090909
Tottenham Hotspur Women 9476190 0.7619043
Bristol City WFC 8.545455 07727273

Aston Villa 7272727 0.6363636

Birmingham City WFC 5619043 0.6666667

STATSE?MB

Data Use Case 2: From Data to a Chart

library(ggplot2)

ggplot(data = shots_goals,

aes(x = reorder(team.name, shots), y = shots)) + #1
geom_bar(stat = "identity", width = 0.5) + #2
labs(y="Shots") + #3
theme(axis.title.y = element_blank()) + #4
scale_y_continuous(expand = ¢(0,0)) + #5
coord_flip() + #6
theme_SB() #7

STATSB2MVB

#1: Here we are telling ggplot what data we are using and what we
want to plot on the x/y axes of our chart. ‘Reorder’ quite literally
reorders the team names according to the number of shots they
have.

#2: Now we are telling ggplot to format it is a bar chart.
#3: This relabels the shots axis.
#4: This removes the title for the axis.

#5: Here we cut down on the space between the bars and the edge
of the plot

#6: This flips the entire plot, with the bars now going horizontally
instead.

#7: theme_SB() is our own internal visual aesthetic for ggplot charts
that we have packaged with StatsBombR. Optional of course.

Data Use Case 2: From Data to a Chart

All that should result in a chart like this.

Of course this is a basic chart, fairly visually plain on its own
and it could be altered in many ways to add your own spin on

It

Almost every element of a ggplot chart - from the text to the
plotted data itself and beyond - can be changed how you see

fit. There’s lots of room for creativity.

For an in depth reference point on what kind of charts you
can create or how you can modify them, you can look here:

https: lot2.tidyverse.org/reference

STATSB2MVB

Shots Per Game
Women's Super League, 2020-21
[

Chelsea FCW
Manchester United
Arsenal WFC

Reading WFC

Everton LFC

West Ham United LFC

Brighton & Hove Albion WFC

Tottenham Hotspur Women

Bristol City WFC
Aston Villa
L
0 5

Birmingham City WFC

10 15
Shots

https://ggplot2.tidyverse.org/reference/

Data Use Case 3: Player Shots Per 90

player_shots = StatsBombData %>%

group_by(player.name, player.id) %>%

summarise(shots = sum(type.name=="Shot", na.rm = TRUE)) #1
player_minutes = get.minutesplayed(StatsBombData) #2
player_minutes = player_minutes %>%

group_by(player.id) %>%

summarise(minutes = sum(MinutesPlayed)) #3

player_shots = left_join(player_shots, player_minutes) #4

player_shots = player_shots %>% mutate(nineties = minutes/90) #5

player_shots = player_shots %>% mutate(shots_per90 = shots/nineties) #6

STATSB2MVB

#1: Much the same as the team calculation. We are including
‘player.id’ here as it will be important later.

#2: This function gives us the minutes played in each match by
ever player in the dataset.

#3: Now we group that by player and sum it altogether to get
their total minutes played.

#4: left_join allows us to combine our shots table and our
minutes table, with the the player.id acting as a reference point.

#5: mutate is a dplyr function that creates a new column. In this
instance we are creating a column that divides the minutes
totals by 90, giving us each playerEs number of 90s played for
the season.

#6: Finally we divide our shots totals by our number of 90s to get
our shots per 90s column.

Data Use Case 3: Player Shots Per 90

Now you’ll have shots per 90 for all the players e = P ——
across the WSL (or your league of choice). This can Vit Memere ot B
. 0 G) . . Samantha May Kerr 1601.07417 17.7897130 48342545
be clea.ned up using dplyf s ‘filter fu nction, in order S e e e
to get rid of the players with few minutes played. Alessia Russo 0361567 337078 41s00a3s
Samantha June Mewis 1222.48738 135831931 41227419
This same process can of course be apphed to all Christen Annemarie Press 101008237 112231374 39204724
sorts of events with StatsBomb Data. Certain types of |l e
. . Ella Toone 1900.17532 21.1130591 3.7417600
passes, defensive actions and so on. Janine Elizabeth Beckie 63220128 75810143 36934372

Lauren James 46582575 51758417 3.6709005
Martha Thomas 131805083 14.6450093 34824150
Bethany England 1069.05097 11.8783441 34516596

Rosemary Kathleen Lavelle 538.09182 59787980 3.3451540

Ebony Salmon 1628.75050 18.0972273 33154249

Georgia Stanway 1599.06547 17.7673941 29820923

STATSE?MB

Data Use Case 4: Plotting Passes

Finally, we're going to look at plotting a player’s passes on a pitch. For this we of course need some sort of
pitch visualisation. You might want to create your own once you become more familiar with ggplot and using
it for more complex purposes (there will be a flexible version that we use later in this presentation). However,
handily, there are several pre-made solutions out there.

The one we'll be using here comes courtesy of FC rStats. A twitter user who has put together various helpful,
public R packages for parsing football data. The package is called ‘SBPitch’ and it does exactly what it says on
the tin. There will be further options in the ‘Other Useful Packages’ at the end of this document. First let’s get it
installed with the following code:

devtools::install_github("FCrSTATS/SBpitch”)

We’re going to plot Fran Kirby’s completed passes into the box for the 2020/21 FA Women’s Super League
season. Plotting all of her passes would get messy of course, so this is a clearer subset. Make sure you’ve used
the functions previously discussed to pull that data.

STATSB2MVB

https://twitter.com/fc_rstats
https://github.com/FCrSTATS/SBpitch

Data Use Case 4: Plotting Passes

library(SBpitch)

passes = wsldata %>%

filter(type.name=="Pass" & is.na(pass.outcome.name) &
player.id==4641) %>% #1

filter(pass.end_location.x>=102 & pass.end_location.y<=62 &
pass.end_location.y>=18) #2

create_Pitch() +

geom_segment(data = passes, aes(x = location.x, y = location.y,

xend = pass.end_location.x, yend = pass.end_location.y),
lineend = "round", size = 0.5, colour = "#000000", arrow =

arrow(length = unit(0.07, "inches"), ends = "last", type = "open")) + #3

labs(title = "Fran Kirby, Completed Box Passes", subtitle = "WSL,
2020-21") + #4
scale_y_reverse() + #5
coord_fixed(ratio = 105/100) #6

STATSB2MVB

#1: Pull some of the FA WSL data of your choice and call it
‘wsldata’ for us to work with here. Then we can filter to Fran
Kirby’s passes. is.na(pass.outcome.name) filters to only
completed passes.

#2: Filtering to passes within the box. The coordinates for pitch
markings in SBD can be found in our event spec.

#3: This creates an arrow from one point (location.x/y, the start
part of the pass) to an end point (pass.end_location.x/y, the end
of the pass). Lineend, size and length are are all customisation
options for the arrow.

#4: Creates a title and a subtitle for the plot. You can also add
captions using caption =, along with other options.

#5: Reverses the y axis. Otherwise the data would be plotted on
the wrong side of the pitch.

#6: Fixes the plot to a certain aspect ratio of your choice, so it
doesn’t look stretched.

https://github.com/statsbomb/open-data/blob/master/doc/StatsBomb%20Open%20Data%20Specification%20v1.1.pdf

Fran Kirby

Data Use Case 4: Plotting Passes Completed Box Passes, WSL 202021

You'll have this plot. Again, it’s simple and bare but it starts you
off and from here you can layer on all sorts of customisation.

theme() options allow you to change the size, placement, font
and much more of the titles. As well as to alter lots of other
aesthetic aspects of the plot.

You can add colour =to geom_segment() in order to colour
passes according to what you choose.

Again, be sure to dig into the ggplot documentation to get the
full scope of how powerful it is.

This is a great cheat sheet for various
ways you can use the package.

STATSB2MVB

https://raw.githubusercontent.com/rstudio/cheatsheets/master/pngs/data-visualization.png
https://raw.githubusercontent.com/rstudio/cheatsheets/master/pngs/data-visualization.png

Useful StatsBombR Functions

There all sorts of functions within StatsBombR for different purposes. You can find them all here, deeper into
the github page. Not all functions are related to the free data. Some are only accessible for customers via our
API. Here’s a quick rundown of some you may find useful:

allclean() - Mentioned previously but to elucidate: this extrapolates lots of new, helpful columns from the pre
existing columns. For example, it takes the location column and splits it up into separate x/y columns. It also
extracts freeze frame data and goalkeeper information. Make sure to use.

get.playerfootedness() - Gives you a player’s assumed preferred foot using our pass footedness data.
get.opposingteam() - Returns an opposing team column for each team in each match.

get.gamestate() - Returns information for how much time each team spent in various game states
(winning/drawing/losing) for each match.

annotate_pitchSB() - Our own solution for plotting a pitch with ggplot.

STATSB2MVB

https://github.com/statsbomb/StatsBombR/tree/master/R

Other Useful Packages

The community around R is packed with packages that fulfill all sorts of needs. Chances are that, if you’re
looking to do something in R or fix some sort of issue, there’s a package out there for it. There are far too many
to name but here’s a brief selection of some that may be relevant to working with StatsBomb Data:

Ben Torvaney, ggsoccer - A package that contains an alternative for plotting a pitch with SB Data.

Joe Gallagher, soccermatics - Also offers an option for pitch plotting along with other useful shortcuts for
creating heatmaps and so on.

ggrepel - Useful for when you’re having issues with overlapping labels on a chart.

gganimate - If you ever feel like getting more elaborate with your graphics, this gives you a simple way to
create animated ones within R and ggplot.

STATSB2MVB

https://github.com/Torvaney/ggsoccer
https://github.com/JoGall/soccermatics
https://cran.r-project.org/web/packages/ggrepel/vignettes/ggrepel.html
https://github.com/thomasp85/gganimate

More Data Use Cases

The content beyond this pointin the guide is aimed at those that have been through the first part of the guide
and have been playing about with SBD for a while now.

It's important that you have done this first as we will not be walking through absolutely everything -- we
assume a certain level of familiarity with R in this section.

There’ll be three use cases this time:

Use Case 5: xG Assisted, Joining, and xG+xGA - An example of how to create and then plot custom metrics
with the data, creating xG Assisted in a dataframe using ‘joining” and then creating an xG + xG Assisted plot.

Use Case 6: Graphing Shots On a Chart - Heatmaps are one of the everpresents in football data. They are
fairly easy to make in R once you get your head round how to do so, but can be unintuitive without having it
explained first.

Use Case 7: Shot Maps - Another of the quintessential football visualisations, shot maps come in many
shapes and sizes with an inconsistent overlap in design language between them. This version will attempt to
give you the basics.

STATSB2MVB

Data Use Case 5: xG Assisted, Joining, and xG+xGA

XG assisted does not exist in our data initially. However, given that xGA
is the xG value of a shot that a key pass/assist created, and that xG
values do exist in our data, we can create xGA quite easily via joining.

library(tidyverse)

library(StatsBombR)

XGA = events %>%

filter(type.name=="Shot") %>% #1
select(shot.key_pass_id, xGA = shot.statsbomb_xg) #2

shot_assists = left_join(events, xGA, by = c("id" = "shot.key_pass_id"))
%>% #3

select(team.name, player.name, player.id, type.name, pass.shot_assist,
pass.goal_assist, xGA) %>% #4

filter(pass.shot_assist==TRUE | pass.goal_assist==TRUE) #5

STATSB2MVB

#1 Filtering the data to just shots, as they are the only events with xG
values.

#2 Select() allows you to choose which columns you want to, well,
select, from your daata, as not all are always necessary - especially with
big datasets. First we are selecting the shot.key_pass_id column, which
is a variable attached to shots that is just the ID of the pass that created
the shot. You can also rename columns within select() which is what we
are doing with XGA = shot.statsbomb_xg. This is so that, when we join it
with the passes, it already has the correct name.

#3 left_join() lets you combine the columns from two different DFs by
using two columns within either side of the join as reference keys. So in
this example we are taking our initial DF (‘events’) and joining it with the
one we just made (‘'XGA'). The key is the by = c("id" = "shot.key_pass_id")
part, this is saying ‘join these two DFs on instances where the id column
in events matches the ‘shot.key_pass_id’ column in XGA’. So now the
passes have the xG of the shots they created attached to them under the
new column xGA.

#4 Again selecting just the relevant columns.

#5 Filtering our data down to just key passes/assists.

Data Use Case 5: xG Assisted, Joining, and xG+xGA

The end result should look like this:

team.name

Tottenham Hotspur Women
Tottenham Hotspur Women
Tottenham Hotspur Women
Tottenham Hotspur Women
West Ham United LFC

West Ham United LFC

West Ham United LFC

West Ham United LFC
Tottenham Hotspur Women
West Ham United LFC

West Ham United LFC
Tottenham Hotspur Women
Tottenham Hotspur Women
Tottenham Hotspur Women

Tottenham Hotspur Women

STATSE?MB

typename

Pass

player.name
Kit Graham

Hannah Godfrey
Siri Worm

Josie Green
Leanne Kiernan
Alisha Lehmann
Mayumi Pacheco
Laura Vetterlein
Kit Graham
Kenza Dali
Kenza Dali

Lucia Leon
Alanna Stephanie Kennedy
Siri Worm

Kerys Harrop

-
-

pass.shot_assist
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

A

-
-

pass.goal_assist

-
-

*GA s
0.013642391
0.136871190
0.124624130
0.023807010
0.195310940
0.016685791
0.014963740
0.073902200
0.032679975
0.015043590
0.097647170
0.032994740
0.025588946
0.021140845
0.033708397

Data Use Case 5: xG Assisted, Joining, and xG+xGA

All lovely. But what if you want to make a chart out of it?
Say you want to combine it with xG to make a handy xG+xGA per90 chart:

player_xGA = shot_assists %>% player_xG_xGA = left_join(player_xG, player_minutes) %>%
group_by(player.name, player.id, team.name) %>% mutate(nineties = minutes/90,
summarise(XGA = sum(xGA, na.rm = TRUE)) #1 XxG_90 = round(xG/nineties, 2),
XGA_90 = round(xGA/nineties,2),
player_xG = events %>% xG_xGA90 = round(xG_xGA/nineties,2)) #4
filter(type.name=="Shot") %>%
filter(shot.type.name!="Penalty" | is.na(shot.type.name)) %>% chart = player_xG_xGA %>%
group_by(player.name, player.id, team.name) %>% ungroup() %>%
summarise(xG = sum(shot.statsbomb_xg, na.rm = TRUE)) %>% filter(minutes>=600) %>%
left_join(player_xGA) %>% top_n(n =15, w = xG_xGA90) #5

mutate(xG_xGA = sum(xG+xGA, na.rm =TRUE)) #2
chart<-chart %>%

player_minutes = get.minutesplayed(events) select(1, 9:10)%>%
]] pivot_longer(-player.name, names_to = "variable", values_to = "value") %>%
player_minutes = player_minutes %>% filter(variable=="xG_90" | variable=="xGA_90") #6

group_by(player.id) %>%
summarise(minutes = sum(MinutesPlayed)) #3

STATSB2MVB

Data Use Case 5: xG Assisted, Joining, and xG+xGA

#1 Grouping by player and summing their total xGA for the season.

#2 Filtering out penalties and summing each player's xG, then joining with
the xGA and adding the two together to get a third combined column.

#3 Getting minutes played for each player. If you went through the earlier
data use cases in this guide you will have done this already.

#4 Joining the XG/XGA to the minutes, creating the 90s and dividing each stat
by the 90s to get xG per 90 etc.

#5 Here we ungroup as we need the data in ungrouped form for what we're
about to do. First we filter to players with a minimum of 600 minutes, just to
get rid of notably small samples. Then we use top_n(). This filters your DF to
the top *insert number of your choice here* based on a column you specify.
So here we're filtering to the top 15 players in terms of xG90+xGA90.

#6 The pivot_longer() function flattens out the data. It's easier to explain what
that means if you see it first:

player.name

Bethany England

Bethany England

Caitlin Jade Foord

Caitlin Jade Foord

Chloe Kelly

Chloe Kelly

Christen Annemarie Press
Christen Annemarie Press

Francesca Kirby

Francesca Kirby

Janine Elizabeth Beckie
Janine Elizabeth Beckie
Jill Roord
Jill Roord

Jordan Nobbs

It'’s used the player.name as a reference point and creates separate
rows for every variable that's left over. We then filter down to just the
xG90 and xGA90 variables so now each player has a separate variable
and value row for those two metrics.

STATSE?MB

Data Use Case 5: xG Assisted, Joining, and xG+xGA

Now let’s plot it: ggplot(chart, aes(x =reorder(player.name, value), y = value, fill=fct_rev(variable))) + #1

STATSB2MVB

geom_bar(stat="identity", colour="white")+
labs(title = "Expected Goal Contribution", subtitle = "FA Women's Super League, 2020-21",
x="" y="Per 90", caption ="Minimum 600 minutes\nNPxG = Value of shots taken (no penalties)\nxG assisted = Value of shots assisted")+
theme(axis.text.y = element_text(size=14, color="#333333", family="Source Sans Pro"),
axis.title = element_text(size=14, color="#333333", family="Source Sans Pro"),
axis.text.x = element_text(size=14, color="#333333", family="Source Sans Pro"),
axis.ticks = element_blank(),
panel.background = element_rect(fill = "white", colour = "white"),
plot.background = element_rect(fill = "white", colour ="white"),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
plot.title=element_text(size=24, color="#333333", family="Source Sans Pro" , face="bold"),
plot.subtitle=element_text(size=18, color="#333333", family="Source Sans Pro", face="bold"),
plot.caption=element_text(color="#333333", family="Source Sans Pro"; size =10),
text=element_text(family="Source Sans Pro"),
legend.title=element_blank(),
legend.text = element_text(size=14, color="#333333", family="Source Sans Pro"),
legend.position = "bottom") + #2
scale_fill_manual(values=c("#3371AC", "#DC2228"), labels = c("xG Assisted","NPxG")) + #3
scale_y_continuous(expand = c(0, 0), limits= c(0,max(chartSvalue) + 0.3)) + #4
coord_flip()+ #5
guides(fill = guide_legend(reverse = TRUE)) #6

Data Use Case 5: xG Assisted, Joining, and xG+xGA

#1: Two things are going on here that are different from your average
bar chart. First is reorder(), which allows you reorder a variable along
either axis based on a second variable. In this instance we are putting
the player names on the x axis and reordering them by value - i.e the xG
and XxGA combined - meaning they are now in descending order from
most to least combined xG+xGA. Second is that we've put the 'variable'
on the barfill. This allows us to put two separate metrics onto one bar
chart and have them stack, as you will see below, by having them be
separate fill colours.

#2: Everything within [abs() and theme() is fairly self explanatory and is
just what we have used internally. You can get rid of all this if you like
and change it to suit your own design tastes.

#3: Here we are providing specific colour hex codes to the values (so xG
=red and XGA = blue) and then labelling them so they are named
correctly on the chart's legend.

STATSB2MVB

#4: Fxpand() allows you to expand the boundaries of the x or y axis, but
if you set the values to (0,0) it also removes all space between the axis
and the inner chart itself (if you're having a hard time envisioning that,
try removing expand() and see what it looks like). Then we are setting
the limits of the y axis so the longest bar on the chartisn't too close to
the edge of the chart. 'max(chartSvalue) + 0.3 is saying 'take the max
value and add 0.3 to make that the upper limit of the y axis".

#5: Flipping the x axis and y axis so we have a nice horizontal bar chart
rather than a vertical one.

#6: Reversing the legend so that the order of it matches up with the
order of XG and xGA on the chart itself.

Data Use Case 5: xG Assisted, Joining, and xG+xGA

The end result should look like this:

Expected Goal Contribution

FA Women's Super League, 2020-21

Samantha May Kerr
Vivianne Misdema
Janine Elizabeth Beckie
Francesca Kirby

Bethany England

Chloe Kelly

Tobin Powell Heath
Caitlin Jade Foord
Lauren Hemp
Jordan Nobbs
Pernille Mosegaard Harder
Christen Annemarie Press
Samantha June Mewis
Jill Roord

Martha Thomas

(=]
]
=
3

0.25

e
o
=]

Per 90

W nexc B X6 Assisted

L
2]
=]

A
o

Minimum 500 minutes

NPXG =Yalue of $ots taken (no penalties)

»G assisted = Value of shots asssied

STATSB2MVB

Data Use Case 6: Heatmaps

For this example we're going to do a defensive heatmap, looking at how often teams make a % of
their overall defensive actions in certain zones, then comparing that % vs league average:

library(tidyverse)

heatmap = events %>%mutate(location.x = ifelse(location.x>120, 120, location.x),
location.y = ifelse(location.y>80, 80, location.y),

location.x = ifelse(location.x<0, 0, location.x),

location.y = ifelse(location.y<0, 0, location.y)) #1

heatmapSxbin <- cut(heatmap$location.x, breaks = seq(from=0, to=120, by = 20),include.lowest=TRUE)
heatmapSybin <- cut(heatmapS$location.y, breaks = seq(from=0, to=80, by = 20),include.lowest=TRUE) #2

#1 Some of the coordinates in our data sit outside the bounds of the pitch (you can see the layout of our pitch coordinates in our event spec,
but it's 0-120 along the x axis and 0-80 along the y axis). This will cause issue with a heatmap and give you dodgy looking zones outside the
pitch. So what we're doing here is using ifelse() to say 'if a location.x/y coordinate is outside the bounds that we want, then replace it with one
that's within the boundaries. If it is not outside the bounds just leave it as is'.

#2 cut() literally cuts up the data how you ask it to. Here, we're cutting along the x axis (from 0-120, again the length of our pitch according to our
coordinates in the spec) and the y axis (0-80), and we're cutting them 'by' the value we feed it, in this case 20. So we're splitting it up into
buckets of 20. This creates 6 buckets/zones along the x axis (120/20 = 6) and 4 along the y axis (80/20 = 4). This creates the buckets we need to
plot our zones.

STATSB2MVB

Data Use Case 6: Heatmaps

heatmap = heatmap%>% #3: This is using those buckets to create the zones. Let's
filter(type.name=="Pressure" | duel.type.name=="Tackle" | break it down bit-by-bit:

type.name=="Foul Committed" | type.name=="Interception" | - Filtering to only defensive events

type.name=="Block") %>%
group_by(team.name) %>%
mutate(total_DA =n()) %>%
group_by(team.name, xbin, ybin) %>%
summarise(total_DA = max(total_DA),
bin_DA =n(),

bin_pct = bin_DA/total_DA,

location.x = median(location.x),

location.y = median(location.y)) %>%
group_by(xbin, ybin) %>%
mutate(league_ave = mean(bin_pct)) %>%
group_by(team.name, xbin, ybin) %>%
mutate(diff_vs_ave = bin_pct - league_ave) #3

STATSB2MVB

- Grouping by team and getting how many defensive events
they made in total (n() just counts every row that you ask it
to, so here we're counting every row for every team - i.e
counting every defensive event for each team)

- Then we group again by team and the xbin/ybin to count
how many defensive events a team has in a given bin/zone -
that's what 'bin_DA =n()" is doing. 'total_DA = max(total_DA),’
is just grabbing the team totals we made earlier. 'bin_pct =
bin_DA/total_DA," is dividing the two to see what percentage
of a team's overall defensive events were made in a given
zone. The 'location.x = median(location.x/y)" is doing what it
says on the tin and getting the median coordinate for each
zone. This is used laterin the plotting.

- Then we ungroup and mutate to find the league average for
each bin, followed by grouping by team/bin again
subtracting the league average in each bin from each team's
% in those bins to get the difference.

Data Use Case 6: Heatmaps

heatmap = events
mutate(location.x ifelse(location.x>120, 120, location.Xx),
location.y = ifelse(location. 0, 80, location.y),
location.x ifelse(location.x<0, 0, location.x),
location.y = ifelse(location.y<0, 0, location.y))

heatmap$xbin <- cut(heatmap$location.x, breaks = seq(from=0, to=120, by = 20),include. lowest=T~
heatmapsybin <- cut(heatmap$location.y, breaks = seq(from=0, to=80, by = 20),include. lowest=

heatmap = heatmap
filter (type.name: " | duel.type.name=="Tackle" type.name=="Foul Committed” | type.name=="Interception” | type.name=="Block")
group_by(team.name) X
mutate(total_PA = n())
group_by(team.name, xbin, ybin
summarise(total_DA = max(total_DA
bin_DA =)y
bin_pct = bin_DA/total_DA,
location.x = median(location.x)
Tocation.y = median(location.y)]
(xbin, ybin) %>
eague_ave = mean(bin_pct
group_by(team.name, xbin, ybin
mutate(diff_vs_ave = bin_pct -

STATSEB#?MBE

Data Use Case 6: Heatmaps

Now onto the plotting. For this please install the package 'grid" if you do not have it, and load
itin. You could use a package like 'ggsoccer' or 'SBPitch' for drawing the pitch, but for these
purposes it's helpful to try and show you how to create your own pitch, should you want to:

library(grid)

defensiveactivitycolors <- c¢("#dc2429", "#dc2329", "#df272d", "#df3238", "#e14348", "#e44d51",
"#e35256", "#e76266", "#e9777b", "#ec8589", "#ec898d", "#ef9195",

"#ef9eal”, "#f0a6a9", "#f2abae", "#f4b9bc", "#f8d1d2", "#f9e0e2",

"#f7ele3", "#f5e2e4", "#d4d5d8", "#d1d3d8", "#cdd2d6", "#c8cdd3", "#cOc7cd",

"#b9c0c8", "#b5bcc3", "#909ba5", "#8f9aa5", "#818¢c98", "#798590",

"#697785", "#526173", "#435367", "#3a4b60", "#2e4257", "#1d3048",

"#11263e", "#11273e", "#0d233a", "#020c16") #1

#1: These are the colours we'll be
using for our heatmap later on.

STATSB2MVB

Data Use Case 6: Heatmaps

ggplot(data= heatmap, aes(x = location.x, y = location.y, fill = diff_vs_ave, group =diff_vs_ave)) +
geom_bin2d(binwidth = ¢(20, 20), position = "identity", alpha = 0.9) + #2
annotate("rect",xmin = 0, xmax = 120, ymin = 0, ymax = 80, fill = NA, colour = "black"; size = 0.6) +
annotate("rect",xmin = 0, xmax = 60, ymin = 0, ymax = 80, fill = NA, colour = "black", size = 0.6) +
annotate("rect",xmin = 18, xmax = 0, ymin = 18, ymax = 62, fill = NA, colour = "white", size = 0.6) +
annotate("rect",xmin =102, xmax = 120, ymin = 18, ymax = 62, fill = NA, colour = "white", size = 0.6) +
annotate("rect",xmin = 0, xmax = 6, ymin = 30, ymax = 50, fill = NA, colour = "white"; size = 0.6) +
annotate("rect",;xmin = 120, xmax = 114, ymin = 30, ymax = 50, fill = NA, colour = "white", size = 0.6) +
annotate("rect",xmin = 120, xmax = 120.5, ymin =36, ymax = 44, fill = NA, colour = "black", size = 0.6) +
annotate("rect",xmin = 0, xmax =-0.5, ymin =36, ymax = 44, fill = NA, colour = "black"; size = 0.6) +
annotate("segment", x = 60, xend = 60, y =-0.5, yend = 80.5, colour = "white", size = 0.6)+
annotate("segment", x =0, xend = 0, y = 0, yend = 80, colour = "black", size = 0.6)+
annotate("segment", x = 120, xend = 120, y = 0, yend = 80, colour = "black", size = 0.6)+
theme(rect = element_blank(),
line = element_blank()) +
annotate("point", x =12,y = 40, colour = "white", size =1.05) +
annotate("point", x =108, y = 40, colour = "white", size = 1.05) +
annotate("path”, colour = "white", size = 0.6,
Xx=60+10*cos(seq(0,2*pi,length.out=2000)),
y=40+10%sin(seq(0,2*pi,length.out=2000)))+
annotate("point", x =60, y = 40, colour = "white", size =1.05) +
annotate("path", x=12+10*cos(seq(-0.3*pi,0.3*pi,length.out=30)), size = 0.6,
y=40+10%sin(seq(-0.3*pi,0.3*pi,length.out=30)), col="white") +
annotate("path", x=108-10*cos(seq(-0.3*pi,0.3*pi,length.out=30)), size = 0.6,
y=40-10%sin(seq(-0.3*pi,0.3*pi,length.out=30)), col="white") + #3

Bear in mind this next section of code--on
this slide and the next--should be pasted into
the console in one block. Be careful to do this
when entering the code.

#2: 'geom_bin2d'is what will create the
heatmap itself. We've set the binwidths to 20
as that's what we cut the pitch up into earlier
along the x and y axis. Feeding 'div_vs_ave'to
fill' and 'group' in the ggplot() will allow us to
colour the heatmaps by that variable.

#3: Everything up to here is what is drawing
the pitch. There's a lot going on here and,
rather than have it explained to you, just
delete a line from it and see what disappears
from the plot. Then you'll see which line is
drawing the six-yard-box, which is drawing
the goal etc.

Data Use Case 6: Heatmaps

theme(axis.text.x=element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
plot.caption=element_text(size=13,family="Source Sans Pro", hjust=0.5, vjust=0.5),
plot.subtitle = element_text(size = 18, family="Source Sans Pro", hjust =0.5),
axis.text.y=element_blank(),
legend.title = element_blank(),
legend.text=element_text(size=22,family="Source Sans Pro"),
legend.key.size = unit(1.5, "cm"),
plot.title = element_text(margin = margin(r = 10, b = 10), face="bold",size = 32.5,
family="Source Sans Pro", colour = "black", hjust = 0.5),
legend.direction = "vertical",
axis.ticks=element_blank(),
plot.background = element_rect(fill = "white"),
strip.text.x = element_text(size=13,family="Source Sans Pro")) + #4
scale_y_reverse() + #5
scale_fill_gradientn(colours = defensiveactivitycolors, trans = "reverse", labels =
scales::percent_format(accuracy = 1), limits = c(0.03, -0.03)) + #6
labs(title = "Where Do Teams Defend vs League Average?", subtitle = "FA Women's Super
League, 2020/21") + #7
coord_fixed(ratio = 95/100) + #8

STATSB2MVB

#4: Again more themeing. You can change this to be
whatever you like to fit your aesthetic preferences.

#5: Reversing the y axis so the pitch is the correct way
round along that axis (0 is left in SBD coordinates, but
starts out as right in ggplot).

#6: Here we're setting the parameters for the fill
colouring of heatmaps. First we're feeding the
'defensiveactivitycolors' we set earlier into the 'colours'
parameter, 'trans = "reverse"' is there to reverse the
output so red = high. 'labels =
scales:percent_format(accuracy = 1)' formats the text on
the legend as a percentage rather than a raw number
and 'limits = ¢(0.03, -0.03)" sets the limits of the chart to
3%/-3% (reversed because of the previous trans =
reverse).

#7: Setting the title and subtitle of the chart.
#8: 'coord_fixed()" allows us to set the aspect ratio of the

chart to our liking. Means the chart doesn't come out
looking all stretched along one of the axes.

Data Use Case 6: Heatmaps

annotation_custom(grob = linesGrob(arrow=arrow(type="open", ends="last",
length=unit(2.55,"mm")), gp=gpar(col="black", fill=NA, lwd=2.2)),
xmin=25, xmax = 95, ymin = -83, ymax = -83) + #9
facet_wrap(~team.name)+ #10
guides(fill = guide_legend(reverse = TRUE)) #11

STATSB2MVB

#9: This is what the grid package is used for. It's
drawing the arrow across the pitches to indicate
direction of play. There's multiple ways you could
accomplish though, up to you how you do it.

#10: 'facet_wrap()' creates separate 'facets' for
your chart according to the variable you give it.
Without it, we'd just be plotting every team's
numbers all at once on chart. With it, we get
every team on their own individual pitch.

#11: Our previous trans = reverse also reverses
the legend, so to get it back with the positive
numbers pointing upwards we can re-reverse it.

Data Use Case 6: Heatmaps

ggplot(data= heatmap, aes(x = location.x, y = location.y, fill diff_vs_ave, group =diff_vs_ave
geom_bin2d(binwidth (DY pos1t1on i) +

colour = “black™,

annotate("point”, x = 12 , y 40, colour = “white", size = 1.05) +

3 urce Sans Pro”, hjus
plot.subtitle iz 3 1y="Source Sans Pro", hjust =

legend.title

legend. text=element_text(siz

legend.key.size = umit(1.5, !

plot.title = element_text(margin = margin(r 10 5 = ",si 5, family="Source Sans Pro”, colour = "black"”, hjust
legend.direction rtical”,

axis. ticks=element_blank()

strip.text.x
scale_y_reverse
scalLfﬂ'l grad entn(colours = defensiveactivitycolors, trans = "revers = g = 1), limits = c(
League Average?”, subtitle = ™ 21"

annotation_custom(grob TinesGrob(arrow=arrow(type="open
1 ength=unit(

facet_wrap
guides(fill

STATSEB#?MBE

Data Use Case 6: Heatmaps

Where Do Teams Defend vs League Average?
FAWomen's Super League, 2020/21

Arsenal WFC Aston Villa Birmingham City WFC Brighton & Hove Albion WFC
i]@ 3%
—_— = —_— 5 —_—
Chelsea FCW Everton LFC Manchester City WFC 2%
| 19%
0%
B
— ——
Manchester United Reading WFC Tottenham Hotspur Women West Ham United LFC -2%
o -3%

——— —_—_—_— S

STATSB2MVB

Data Use Case 7: Shot Maps

Another of the quintessential football visualisations, shot maps come in many shapes and sizes with an inconsistent overlap in
design language between them. This version will attempt to give you the basics, let you get to grip with how to put one of these
together so that if you want to elaborate or make any of your own changes you can explore outwards from it. Be forewarned though -
the options for what makes a good, readable shot map are surprisingly small when you get into visualising it!

shots = events %>%
filter(type.name=="Shot" & (shot.type.name!="Penalty" | is.na(shot.type.name)) & player.name=="Samantha May Kerr") #1

shotmapxgcolors <- ¢("#192780", "#2a5d9f", "#40a7d0", "#87cdcf", "#e7f8e6", "#f4ef95", "#FDE960", "#FCDC5F",
"#F5B94D", "#F0983E", "#ED8A37", "#E66424", "#D54F1B", "#DC2608", "#BF0000", "#7F0000", "#5F0000") #2

#1: Simple filtering, leaving out penalties. Choose any player you like of course.

#2: Much like the defensive activity colours earlier, these will set the colours for our XG values.

STATSB2MVB

Data Use Case 7: Shot Maps

ggplot() +
annotate("rect",xmin = 0, xmax = 120, ymin = 0, ymax = 80, fill = NA, colour = "black"; size = 0.6) +
annotate("rect",xmin = 0, xmax = 60, ymin = 0, ymax = 80, fill = NA, colour = "black", size = 0.6) +
annotate("rect",xmin = 18, xmax = 0, ymin = 18, ymax = 62, fill = NA, colour = "black"; size = 0.6) +
annotate("rect",xmin = 102, xmax = 120, ymin = 18, ymax = 62, fill = NA, colour = "black", size = 0.6) +
annotate("rect",xmin = 0, xmax = 6, ymin = 30, ymax = 50, fill = NA, colour = "black", size = 0.6) +
annotate("rect",xmin = 120, xmax = 114, ymin = 30, ymax = 50, fill = NA, colour = "black", size = 0.6) +
annotate("rect",xmin = 120, xmax = 120.5, ymin =36, ymax = 44, fill = NA, colour = "black", size = 0.6) +
annotate("rect",xmin = 0, xmax = -0.5, ymin =36, ymax = 44, fill = NA, colour = "black"; size = 0.6) +
annotate("segment”, x = 60, xend = 60, y =-0.5, yend = 80.5, colour = "black", size = 0.6)+
annotate("segment”, x =0, xend = 0, y = 0, yend = 80, colour = "black", size = 0.6)+
annotate("segment”, x = 120, xend = 120, y = 0, yend = 80, colour = "black", size = 0.6)+
theme(rect = element_blank(),
line = element_blank()) +
add penalty spot right
annotate("point", x =108, y = 40, colour = "black", size =1.05) +
annotate("path"”, colour = "black", size = 0.6,
Xx=60+10%*cos(seq(0,2*pi,length.out=2000)),
y=40+10*sin(seq(0,2*pi,length.out=2000)))+
add centre spot
annotate("point", x =60, y = 40, colour = "black", size = 1.05) +
annotate("path", x=12+10*cos(seq(-0.3*pi,0.3*pi,length.out=30)), size = 0.6,
y=40+10*sin(seq(-0.3*pi,0.3*pi,length.out=30)), col="black") +
annotate("path", x=107.84-10*cos(seq(-0.3*pi,0.3*pi,length.out=30)), size = 0.6,
y=40-10*sin(seq(-0.3*pi,0.3*pi,length.out=30)), col="black") +
geom_point(data = shots, aes(x = location.x, y = location.y, fill = shot.statsbomb_xg, shape = shot.body_part.name),
size =6, alpha=0.8) + #3

Again bear in mind that this next
set of ggplot code (on this slide
and the next two) should be
pasted in one block.

#3: Here's where the actual
plotting of shots comes in, via
geom_point. We're using the the
xG values as the fill and the body
part for the shape of the points.
This could reasonably be
anything though. You could even
add in colour parameters which
would change the colour of the
outline of the shape.

Data Use Case 7: Shot Maps

theme(axis.text.x=element_blank(), #4: Again titling. This can be
axis.title.x = element_blank(), done dynamically so that it

axis.title.y = element_blank(), changes according to the
plot.caption=element_text(size=13,family="Source Sans Pro", hjust=0.5, vjust=0.5), g g

plot.subtitle = element_text(size = 18, family="Source Sans Pro", hjust = 0.5), player/season etc but we will
axis.text.y=element_blank(), leave that for now. Feel free to
legend.position = "top", explore for youself though.

legend.title=element_text(size=22,family="Source Sans Pro"),
legend.text=element_text(size=20,family="Source Sans Pro"),
legend.margin = margin(c(20, 10, -85, 50)),

legend.key.size = unit(1.5, "cm"),

#5: Same as last time but
worth pointing out that

plot.title = element_text(margin = margin(r = 10, b = 10), face="bold",size = 32.5, family="Source Sans 'name" allows you to change
Pro", colour = "black’, hjust = 0.5), the title of a legend from
legend.direction = "horizontal', within the grad ient sett] ng.

axis.ticks=element_blank(),
aspect.ratio = ¢(65/100),
plot.background = element_rect(fill = "white"),
strip.text.x = element_text(size=13,family="Source Sans Pro")) +
labs(title = "Sam Kerr, Shot Map", subtitle = "FA Women's Super League, 2020/21") + #4
scale_fill_gradientn(colours = shotmapxgcolors, limit = ¢(0,0.8), oob=scales::squish, name = "Expected Goals
Value") + #5

STATSB2MVB

Data Use Case 7: Shot Maps

scale_shape_manual(values = c("Head" = 21, "Right Foot" = 23, "Left Foot" = 24), name ="") + #6
guides(fill = guide_colourbarf(title.position = "top"),

shape = guide_legend(override.aes = list(size = 7, fill = "black"))) + #7
coord_flip(xlim = (85, 125)) #8

#6: Setting the shapes for each body part name. The shape numbers correspond to ggplot's
pre-set shapes, which you can find here. The shapes numbered 21 and up are the ones
which have inner colouring (controlled by fill) and outline colouring (controlled by colour) so
that's why those have been chosen here. oob=scales::squish takes any values that are
outside the bounds of our limits and squishes them within them.

#7: guides() allows you to alter the legends for shape, fill and so on. Here we are changing
the the title position for the fill so that it is positioned above the legend, as well as changing

the size and colour of the shape symbols on that legend.

#8: coord_flip() does what it says on the tin - switches the x and y axes. xlim allows us to set
boundaries for the x axis so that we can show only a certain part of the pitch, giving us:

STATSB2MVB

http://www.sthda.com/english/wiki/ggplot2-point-shapes

Data Use Case 7: Shot Maps

", xmin 0) i , ymax = 80, fill , colour "black"”, size
i i) 8o, Fill &, colour black”, size
annotate("rect”,xmin = i 62, Fill = , colour = "black™, size
annotate(“"rect”,xmin 0 =1 i 18, ymax = 62, fill = , colour = "black”, size =
annotate("rect”,xmin 0 i 30, ymax = 50, fill = , colour = "black", size = 0.6) +
(Mrect” ,xmin 0, 1 30, ymax = 50, fill = , colour = "black”, size =)
("rect”,xmin 120, Sy in =36, ymax = 44, fill = s colour = "black", size = 0.
(“rect”,xmin xmax = -0.5, ymin =36, ymax = 44, fﬂ‘l = , colour = "black”, s‘ize =0
"segment”, X { = -0.5, yend = 80.5, colour = "black”, size = 0.6)+
("segment", x = 0, yend = 80, colour = "black", size = 0.6)+
annotate(™ = = 120, xend = 120, y = 0, yend = 80, colour = "black", size = 0.6)+
theme(rect = dJ
Tine = element_blank
annotate("point", x = 108 , y = 40, colour = "black", size =
annotate("path”, colour "black™, size = 0.6,
0+10 cos(seq_.,_ pi,length.out=2000)
=40+10*sin(seq(0, 2*pi, length.out=2000)))+

annotate("point”, x = 60 0 co1our =
annotate("path"”, x: ‘j 3'p1 0.3%
y=40+10 q
annotate("path" d (3"p1 0.3*pi,length. out=30 size = 0.6,
0 sin(seq(-0.3%pi,0.3%pi, ’Iength out 31 col="bla
geom_point(data = shots, aes(x = 10cat1on X, ¥ = location.y, fill = shot statsbomb_xg, shape = shot.body_part.name),
size = 6, alpha = 0.8) +
themex,ax*is.text.x:ﬂement_mank[; .
axis.title.x = element_blank()
axis.title.y = element_blank(
plot. caption=element_text(s1ze—»“,fa1n'ly— Source Sans Pro", hjust=0.5, vjust=0.5),
plot.subtitle = element_text(size = 18, family="Source <ans Pro”, hjust = 0.5),
axis.text.y=element_blank(),
legend.position = "top”,
legend. title=element_text(size=22,family="Source Sans Pro”
Tegend. text=element_text(size=20,family="Source Sans Pro")
legend.margin = margin(c(20, 10, -85, 50)),
legend.key.size = umit(1.5, "am™),
plot.title = element_text(margin = margin(r = 10, b = 10), face="bold",size = 32.5, family="Source Sans Pro”, colour = "black”, hjust =
Tegend.direction = “horizontal”,
axis.ticks=element_blank(),
aspect.ratio = c(65/100),
plot.background = element_rect(fill = " 7 12
strip.text.x = element_text(size=13,family= urce Ssans Pro
labs(title = "Sam Kerr, Shot Map", subtitle = " wWomen's Super League, 2020/21")
scale_fill_gradientn(colours = shotmapxgcolors, limit = c(0,0. q"w, oob=scales: :squish, name = "Expected Goals value") +
scale_shape_manual (values = c(“Head" = 21, "Right Foot" = 23, "Left Foot" = +
guides(fi1l = guide_colourbar(title.position = “top"),
shape = guide_legend(override.aes = list(size = 7, fi1l = "black”
coord_flip(xlim =

Data Use Case 7: Shot Maps

Sam Kerr, Shot Map

FAWomen's Super League, 2020/21

Expected Goals Value

00 02 04 06 038

® Head A LeftFoot € RightFoot

STATSB2MVB

